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Abstract

The class of subsmooth sets strictly contains the class of closed convex sets and
the class of prox-regular sets. The present paper is concerned with the study
of perturbed sweeping process differential inclusions where the moving set is
nonconvex and non prox-regular and depends both on the time and on the state.
We prove the existence of solution, in particular, under the subsmoothness of
the moving set.
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Introduction

In this paper, given a Hilbert space H, we discuss the existence of solution of
the evolution process differential inclusion of the form

(D)



u̇(t) ∈ −N
C
(
t,u(t)

)(u(t)
)

+G
(
t, u(t)

)
a.e. t ∈ [0, T ],

u(t) ∈ C
(
t, u(t)

)
∀t ∈ [0, T ],

u(0) = u0 ∈ C(0, u0).

In (D), C : [0, T ]×H ⇒ H is a multimapping with nonempty closed values and
G : [0, T ] × H ⇒ H is a multimapping with nonempty closed convex values;
by N

C
(
t,u(t)

)(·) we denote a normal cone to the set C(t, u(t)). As stated, the

set C(t, x) depends both on the time t and on the state x. Such differential
inclusions have been introduced, for a time-dependent set, in the form

(SP)


u̇(t) ∈ −NK(t)

(
u(t)

)
a.e. t ∈ [0, T ],

u(t) ∈ K(t) ∀t ∈ [0, T ],

u(0) = u0 ∈ K(0),

by J. J. Moreau [18, 19, 20] who called (SP) a sweeping process because of the
mechanical interpretation (see, e.g., [18, 19, 20]). When G is a single-valued
mapping and C(t, x) is convex, the definition of normal cone of convex sets
makes clear that (D) is a reformulation of quasi-variational inequalities. This
leads to also see, when C(t, x) is nonconvex, (D) as an extended quasi-variational
inequality.

The study of inclusion (D) probably began with K. Chraibi’s thesis [9] with
convex sets C(t, x) in the particular space R3. The second work has been realized
in the Hilbert setting by M. Kunze and M. D. P. Monteiro Marques [16] with
G ≡ {0} and C(t, x) convex for all t ∈ [0, T ] and all x ∈ H. In [8], G is a
Carathéodory (single-valued) mapping, that is, measurable with respect to the
first variable and continuous with respect to the second one. Associating with
each absolutely continuous mapping y : [0, T ]→ H, with y(0) = u0, the unique
solution φ(y) of the time-dependent sweeping process (with unknown mapping
u)

u̇(t) ∈ −N
C
(
t,y(t)

)(u(t)
)

+G
(
t, y(t)

)
with u(0) = u0 ∈ C

(
0, y(0)

)
,

N. Chemetov and M. D. P. Monteiro Marques [8, Theorem 2], by applying
the classical Schauder fixed point theorem to the restriction of φ over a subtle
suitable compact convex set of mappings, proved the existence of solution of (D),
for nonconvex prox-regular and ball-compact sets C(t, x) moving in a contractive
way with respect to the state x. To be more precise, in [8], it is assumed that
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there exists an absolutely continuous function ϑ : [0, T ]→ H, which is monotone
increasing, and a constant L ∈ [0, 1[, such that

|d
(
y, C(t, x)

)
− d
(
y′, C(s, x′)

)
| ≤ ‖y − y′‖+ ϑ(t)− ϑ(s) + L‖x− x′‖ (0.1)

for all t, s ∈ [0, T ] with s < t and x, x′, y, y′ ∈ H. In [4, Theorem 3.3] C.
Castaing, A. G. Ibrahim and M. Yarou obtained, under (0.1) and under the
prox-regularity and ball-compactness assumption for C(t, x), the existence of
solution for (D) when G ≡ {0} via another method applying a generalized
version of the Schauder fixed point theorem from [15, 23]. Given tni = iT/n
(with i = 0 · · · , n) and εni := ϑ(tni+1)− ϑ(tni ), the authors in [4] considered the
implicit scheme

un0 = u0, uni+1 = projC(tni+1,u
n
i+1)

(uni ), uni+1 ∈ B[uni , ε
n
i /(1− L)].

The deep and nice arguments in [4], justifying the existence of such a point
uni+1 via a fixed point theorem from [15, 23], used for each fixed element z in an
appropriate subset of H, the continuity of the mapping x 7→ projC(t,x)(z) due
to (0.1) and to the prox-regularity of C(t, x). Furthermore, with G 6≡ {0} and
C(t, x) convex and ball-compact, using a careful adaptation of their method,
the authors also showed in the same paper [4] an existence result for (D) with
delay, that is, G is an upper semicontinuous and bounded multimapping defined
on [0, T ] × CH(−r, 0) and taking on weakly compact convex values of H; by
CH(−r, 0) we denote with r > 0 the space of all continuous mappings from
[−r, 0] to H; this provides in [4, Corollary 3.1] a solution for (D) under (0.1)
and under the convexity of C(t, x). Note that second order sweeping processes
with prox-regular sets are also studied in [4]. We refer to D. Azzam-Laouir, S.
Izza and L. Thibault [2] for a reduction approach of (D) to an unconstrained
differential inclusion when C(t, x) is prox-regular, G is a multimapping, and
H is finite dimensional. J. Noel and L. Thibault [22] proved the existence of
a solution for (D) in the Hilbert setting when C(t, x) is a ball-compact prox-
regular set and G is a multimapping; the method in [22] is an adaptation of the
above implicit scheme of [4] via a result on the Hölder property of the metric
projection to prox-regular set with respect to the Hausdorff-Pompeiu distance.
With the sets C(t, x) prox-regular and contained in a fixed compact set and
through the semi-explicit scheme

un0 = u0, uni+1 = projC(tni+1,u
n
i )

(uni −
T

2n
gni )

with gni ∈ G(tni , u
n
i ), where tni := i

T

2n
, i = 0, · · · , 2n − 1,

T. Haddad [14] gave another approach which yields to a proof of existence in the
Hilbert setting for (D) without the use of any fixed point theorem. The latter
scheme has been also previously used in K. Chraibi [9] in a less large context
and under the convexity of C(t, x).
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In the present paper 1, using ideas from [14] and [22] we provide a construc-
tive proof of existence of solution for (D) when the sets C(t, x) are ball-compact
and subsmooth. The method also allows us to relax, for the multimapping G,
the growth conditions which are assumed in [4, 14, 8]. The class of subsmooth
sets introduced in [1] strictly contains the class of closed convex sets and the
class of prox-regular sets. In the first section, we recall some variational concepts
and some properties of subsmooth sets, and we prove an upper semicontinuity
result which will be used in our development. The second section is devoted
to the aforementioned constructive proof (using no fixed-point theorem) of the
differential inclusion (D) governed by subsmooth sets C(t, x).

1 Preliminaries

Throughout the paper, H is a Hilbert space whose inner product is denoted
by 〈·, ·〉 and the associated norm by ‖ · ‖. The closed unit ball of H with
center 0 will be denoted by B, and B(x, η) (respectively, B[x, η]) is the open
(respectively, closed) ball of center x ∈ H and radius η > 0. Given a real T > 0,
by CH(0, T ) we shall mean the space of all continuous mappings from [0, T ] to
H. Let S be a nonempty subset of H. For an element x ∈ H, the real d(x, S) or
dS(x) := inf{‖y−x‖ : y ∈ S} is the distance of x from the set S. The projection
set of x into S (or the set of nearest points of S to x) is the set

Proj S(x) := {y ∈ S : dS(x) = ‖x− y‖}.

This set is nonempty when S is nonempty and ball-compact; if Proj S(x) is a
singleton, its unique point will be denoted (as usual) by proj S(x). Recall that
the subset S of (H, ‖ · ‖) is ball-compact provided that S ∩ rB is compact in
(H, ‖ · ‖) for every real r > 0. Obviously any ball-compact set is norm closed,
and in finite dimensions S is ball-compact if and only if it is closed. When
y ∈ Proj S(x), then we have x − y ∈ Np

S(y) where Np
S(·) denotes the proximal

normal cone of S (see (1.4) below and [11] for details).
For a nonempty interval J of R, we recall that a multimapping F : J ⇒ H

is called Lebesgue measurable if for each open set U ⊂ H the set F−1(U) :=
{t ∈ J : F (t) ∩ U 6= ∅} is Lebesgue measurable. When the values of F are
closed subsets of H, we know (see [7]) that the Lebesgue measurability of F is
equivalent to the measurability of the graph of F , that is,

gphF ∈ L(J )⊗ B(H),

where L(J ) denotes the Lebesgue σ-field of J , B(H) the Borel σ-field of H,
and

gphF :=
{

(t, u) ∈ J ×H : u ∈ F (t)
}
.

1The paper is mainly the content of a work of the three authors which is a chapter of the
Ph.D. thesis [21]
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For the subset S of H, coS stands for the closed convex hull of S, and σ(·, S)
represents the support function of S, that is, for all ξ ∈ H,

σ(ξ, S) := sup
y∈S
〈ξ, y〉.

The Clarke normal cone N(S;x) or NS(x) of S at x ∈ S is defined by

NS(x) = {ξ ∈ H : 〈ξ, v〉 ≤ 0,∀v ∈ T (S;x)},

where T (S;x) or TS(x) (see [10]) is the Clarke tangent cone of S at x ∈ S
defined as follows:

v ∈ T (S;x)⇔

 ∀ε > 0,∃δ > 0 such that

∀x′ ∈ B(x, δ) ∩ S,∀t ∈]0, δ[, (x′ + tB(v, ε)) ∩ S 6= ∅.

Equivalently, v ∈ T (S;x) if and only if for any sequence (xn)n of S converging
to x and any sequence of positive reals (tn)n converging to 0, there exists a
sequence (vn)n in H converging to v such that

xn + tnvn ∈ S for all n ∈ N.

We put N(S;x) = ∅, whenever x /∈ S. We typically denote by f : H →
R∪{+∞} a proper function (that is, f is finite at least at one point). The Clarke
subdifferential ∂f(x) of f at a point x ∈ dom f := {x′ ∈ H : f(x′) < +∞} (i.e.,
f(x) is finite) is defined by

∂f(x) =
{
ξ ∈ H : (ξ,−1) ∈ Nepi f

((
x, f(x)

))}
,

where epi f denotes the epigraph of f , that is,

epi f = {(u, r) ∈ H × R : f(u) ≤ r}.

We also put ∂f(x) = ∅ if f is not finite at x ∈ H. We denote by Dom ∂f the
(effective) domain of the multimapping ∂f : H ⇒ H, that is,

Dom ∂f := {x ∈ H : ∂f(x) 6= ∅}.

If ψS denotes the indicator function of the set S, that is, ψS(x) = 0 if x ∈ S
and ψS(x) = +∞ otherwise, then

∂ψS(x) = N(S;x) for all x ∈ H.

The Clarke subdifferential ∂f(x) of a locally Lipschitz function f at x has also
the other useful description

∂f(x) = {ξ ∈ H : 〈ξ, v〉 ≤ fo(u; v),∀v ∈ H},

5



where

fo(x; v) := lim sup
(x′,t)→(x,0+)

f(x′ + tv)− f(x′)

t
.

The above function fo(x; ·) is called the Clarke directional derivative of f at x.
The Clarke normal cone is known ([10]) to be related to the Clarke subdifferen-
tial of the distance function through the equality

N(S;x) = clw(R+∂dS(x)) for all x ∈ S,

where R+ := [0,∞[ and clw denotes the closure with respect to the weak topol-
ogy of H. Further,

∂dS(x) ⊂ N(S;x) ∩ B for all x ∈ S. (1.1)

The concept of Fréchet subdifferential will also be needed. A vector ξ ∈ H
is said to be in the Fréchet subdifferential ∂F f(x) of f at x (see, e.g., [17])
provided that for every ε > 0 there exists δ > 0 such that for all x′ ∈ B(x, δ)
we have

〈ξ, x′ − x〉 ≤ f(x′)− f(x) + ε‖x′ − x‖.

It is known that we always have the inclusion

∂F f(x) ⊂ ∂f(x).

The Fréchet normal cone NF (S;x) or NF
S (x) of S at x ∈ S is given by

NF (S;x) = ∂FψS(x),

so the following inclusion always holds true

NF (S;x) ⊂ N(S;x) for all x ∈ S.

On the other hand, the Fréchet normal cone is also related (see, e.g., [17]) to
the Fréchet subdifferential of the distance function since the following relations
hold true for all x ∈ S

NF (S;x) = R+∂F dS(x)

and
∂F dS(x) = NF (S;x) ∩ B. (1.2)

Another important property is that, whenever y ∈ Proj S(x), one has

x− y ∈ NF (S; y), hence also x− y ∈ N(S; y), (1.3)

since the proximal normal cone

Np(S; y) := R+

(
Proj−1S (y)− y

)
(1.4)

is known to be included in the Fréchet one.

We now recall the definition of subsmooth sets introduced in [1] (see also
[12] for various variants).
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Definition 1.1 Let S be a closed subset of H. We say that S is subsmooth at
x0 ∈ S, if for every ε > 0 there exists δ > 0 such that

〈ξ2 − ξ1, x2 − x1〉 ≥ −ε‖x2 − x1‖, (1.5)

whenever x1, x2 ∈ B(x0, δ)∩S and ξi ∈ N(S;xi)∩B. The set S is subsmooth, if
it is subsmooth at each point of S. We further say that S is uniformly subsmooth,
if for every ε > 0 there exists δ > 0, such that (1.5) holds for all x1, x2 ∈ S
satisfying ‖x1 − x2‖ < δ and all ξi ∈ N(S;xi) ∩ B.

Since 0 ∈ N(S;x2) ∩ B, the set S is clearly subsmooth at x0 ∈ S (resp.
uniformly subsmooth) provided that for every ε > 0 there is δ > 0 such that

〈ξ1, x2 − x1〉 ≤ ε‖x2 − x1‖ (1.6)

for all x1, x2 ∈ B(x0, δ) ∩ S and ξ1 ∈ N(S;x1) ∩ B (resp. for all x1, x2 ∈ S
satisfying ‖x1 − x2‖ < δ and all ξ1 ∈ N(S;x1) ∩ B).

Let us make the connection between the subsmoothness property and other
geometrical concepts.

It has been recognized that the concept of prox-regularity of a set at a point,
developed by R. A. Poliquin, R. T. Rockafellar and L. Thibault [24], plays an
important role in variational analysis. In [1] it is proved that if a closed set
S of H is uniformly prox-regular (respectively, prox-regular at x0 ∈ S), then
it is uniformly subsmooth (respectively, subsmooth at x0). In order to give
simple examples where the converse implication fails, let us recall the concept
of subsmooth function.

Definition 1.2 A function f : H → R ∪ {+∞} Lipschitz near x0 ∈ dom f is
called subsmooth at x0, if for any ε > 0 there exists δ > 0 such that for any
x, x′ ∈ B(x0, δ) and ξ ∈ ∂f(x)

f(x′) ≥ f(x) + 〈ξ, x′ − x〉+ ε‖x′ − x‖.

Obviously, every function f which is of class C1 on an open set U ⊂ H is
subsmooth at each point in U .

Proposition 1.1 [1] Let f : H → R be a function which is locally Lipschitz
near x0 ∈ H. Then f is subsmooth at x0 if only if the set epi f is subsmooth at
(x0, f(x0)).

Proposition 1.2 [1] Let S be a closed subset of H and x0 ∈ S. Then the
following assertions hold:
(a) If S is subsmooth at x0, then it is normally Fréchet regular at x0, that is,

NF (S;x0) = N(S;x0).

(b) If S is prox-regular at x0, then it is normally regular at x0, that is,

Np(S;x0) = NF (S;x0) = N(S;x0).
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Consider now the C1 function on R defined by f(x) = −x5/3 for all x ∈ R.
With Ef := epi f and z0 := (0, 0), it is not difficult to see that

NF (Ef ; z0) = {(x, r) ∈ R2 : x = 0 and r ≤ 0} and Np(Ef ; z0) = {(0, 0)},

then NF (Ef ; z0) 6= Np(Ef ; z0). Consequently, the set Ef is subsmooth by
Proposition 1.1 while it is not prox-regular at z0 according to the assertion (b)
in Proposition1.2.

It is worth mentioning that any C1 (resp. C2) submanifold is subsmooth
(resp. prox-regular). Besides this class and that in Proposition 1.1, there are
plenty of nonsmooth subsmooth sets. For example, it is easily seen that the
nonsmooth set S := {(x, r) ∈ R2 : x ≥ 0, r ≥ −x5/3} in R2 is subsmooth; note
also that it is not prox-regular at (0, 0).

The following subdifferential regularity of the distance function also holds
true for subsmooth sets:

Proposition 1.3 [12, 21] If a closed set S of H is subsmooth at x0 ∈ S, then

∂dS(x0) = ∂F dS(x0).

We now introduce the definition of equi-uniform subsmoothness for a family
of sets. The notion will be used in the proof of various results.

Definition 1.3 Let
(
S(q)

)
q∈Q be a family of closed sets of H with parameter

q ∈ Q. This family is called equi-uniformly subsmooth, if for every ε > 0, there
exists δ > 0 such that, for each q ∈ Q, the inequality (1.5) (or equivalently (1.6))
holds for all x1, x2 ∈ S(q) satisfying ‖x1 − x2‖ < δ and all ξi ∈ N

(
S(q);xi

)
∩B

(resp. ξ1 ∈ N
(
S(q);x1

)
∩ B).

The following lemma related to subsmooth sets will be used in the next
proposition.

Lemma 1.1 Let E be a metric space and let (S(q))q∈E be a family of nonempty
closed sets of H which is equi-uniformly subsmooth and let a real η ≥ 0. Let
Q ⊂ E and q0 ∈ clQ. Then the following hold:

(a) For all (q, x) ∈ gphS we have η∂dS(q)(x) ⊂ ηB;

(b) For any net (qj)j∈J in Q converging to q0, any net (xj)j∈J converging
to x ∈ S(q0) in (H, ‖ · ‖) with xj ∈ S(qj) and dS(qj)(y) →

j∈J
0 for every

y ∈ S(q0), and any net (ξj)j∈J converging weakly to ξ in (H,w(H,H))
with ξj ∈ η∂dS(qj)(xj), we have ξ ∈ η∂dS(q0)(x).

Proof. The assertion (a) being due to (1.1), we have to show (b). Of
course, we may suppose that η > 0. Take any real ε > 0. By Definition of
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equi-uniform subsmoothness choose δ > 0 such that for all q ∈ E, x′, x′′ ∈ S(q)
with ‖x′ − x′′‖ < δ and all ξ′ ∈ N(S(q);x′) ∩ B and ξ′′ ∈ N(S(q);x′′) ∩ B

〈ξ′ − ξ′′, x′ − x′′〉 ≥ −ε‖x′ − x′′‖. (1.7)

Fix any nets (qj)j∈J in Q converging to q0, (xj)j∈J converging strongly to
x ∈ S(q0) in H with xj ∈ S(qj) and dS(qj)(y) →

j∈J
0 for every y ∈ S(q0), where

(J,4) is a directed preordered set. Fix also any net (ξj)j∈J converging weakly
to ξ in H such that ξj ∈ η∂dS(qj)(xj). Since xj ∈ S(qj), the latter inclusion
means η−1ξj ∈ NS(qj)(xj) ∩ B for all j ∈ J (see (1.2) and Proposition 1.3). Fix

y ∈ B(x, δ2 ) ∩ S(q0). For each n ∈ N and each j ∈ J , choose some yj,n ∈ S(qj)
such that

‖yj,n − y‖ ≤ dS(qj)(y) +
1

n
.

Endowing J × N with the product preorder which is obviously directed, the
family (yj,n)(j,n)∈J×N is a net in H. Since

dS(qj)(y) +
1

n
−→

(j,n)∈J×N
0,

we have ‖yj,n− y‖ −→
(j,n)∈J×N

0, that is, yj,n −→
(j,n)∈J×N

y strongly in H, and hence

there exists j0 ∈ J and n0 ∈ N such that for all (j, n) ∈ J × N with j < j0 and
n ≥ n0 we have yj,n ∈ B(x, δ2 ). Put xj,n := xj for all (j, n) ∈ J × N. Obviously
xj,n −→

(j,n)∈J×N
x strongly in H (because xj →

j∈J
x). So, we may also suppose that

xj,n ∈ B(x, δ2 ) for all (j, n) ∈ J × N, with j < j0 and n ≥ n0. Thus, for all
(j, n) ∈ J × N with j < j0 and n ≥ n0 we have

‖yj,n − x‖ <
δ

2
and ‖xj,n − x‖ <

δ

2
.

Set ξj,n := ξj and qj,n := qj for all (j, n) ∈ J × N. The net (qj,n)(j,n)∈J×N
converges to q0 and the net ξj,n)(j,n)∈J×N converges weakly to ξ in H and
η−1ξj,n ∈ NS(qj,n)(xj,n) ∩ B. Thanks to the latter inequalities above, for all
(j, n) ∈ J×N with j < j0 and n ≥ n0 we have ‖yj,n−xj,n‖ < δ with yj,n, xj,n ∈
S(qj,n), and hence according to (1.7))

〈0− η−1ξj,n, yj,n − xj,n〉 ≥ −ε‖yj,n − xj,n‖

or equivalently
〈η−1ξj,n, yj,n − xj,n〉 ≤ ε‖yj,n − xj,n‖.

Since the net (η−1ξj,n)(j,n)∈J×N is bounded (by the real number 1), we may pass
to the limit to obtain

〈η−1ξ, y − x〉 ≤ ε‖y − x‖
for all y ∈ B(x, δ2 ) ∩ S(q0) and hence η−1ξ ∈ NF

S(q0)
(x). Further, η−1ξj,n ∈ B

for all (j, n) ∈ J ×N and this ensures η−1ξ ∈ B. Thus, η−1ξ ∈ NF
S(q0)

(x)∩B, so

(1.2) gives η−1ξ ∈ ∂F dS(q0)(x) ⊂ ∂dS(q0)(x). The proof is then complete. �
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Through Lemma 1.1 we can establish the following partial upper semiconti-
nuity property.

Proposition 1.4 Let {C(t, x) : (t, x) ∈ [0, T ] × H} be a family of nonempty
closed sets of H which is equi-uniformly subsmooth and let a real η ≥ 0. Assume
that there exist a real constant L ≥ 0 and a continuous function ϑ : [0, T ] → R
such that, for any x, x′, y, y′ ∈ H and s, t ∈ [0, T ]

|d
(
y, C(t, x)

)
− d
(
y′, C(s, x′)

)
| ≤ ‖y − y′‖+ |ϑ(t)− ϑ(s)|+ L‖x− x′‖.

Then the following assertions hold:

(a) For all (s, x, y) ∈ gphC we have η∂dC(s,x)(y) ⊂ ηB;

(b) For any sequence (sn)n in [0, T ] converging to s, any sequence (xn)n con-
verging to x, any sequence (yn)n converging to y ∈ C(s, x) with yn ∈
C(sn, xn), and any ξ ∈ H, we have

lim sup
n→∞

σ
(
ξ, η∂dC(sn,xn)(yn)

)
≤ σ

(
ξ, η∂dC(s,x)(y)

)
.

Proof. The proof will be an application of Lemma 1.1 above. Since (a) is
obvious, we only have to prove (b). Let (sn)n, (xn)n and (yn)n be as in the
statement. Extracting a subsequence if necessary, we may suppose that

lim sup
n→∞

σ
(
ξ, η∂dC(sn,xn)(yn)

)
= lim
n→∞

σ
(
ξ, η∂dC(sn,xn)(yn)

)
.

For any n, the weak compactness of η∂dC(sn,xn)(yn) ensures the existence of
some ζn ∈ η∂dC(sn,xn)(yn) such that

〈ξ, ζn〉 = σ
(
ξ, η∂dC(sn,xn)(yn)

)
.

Since ‖ζn‖ ≤ η by (a), a subsequence of (ζn)n (that we do not relabel) converges
weakly to some ζ in H. It results that

〈ξ, ζ〉 = lim sup
n→∞

σ
(
ξ, η∂dC(sn,xn)(yn)

)
. (1.8)

Now, observe, for each z ∈ C(s, x), that

0 ≤ d
(
z, C(sn, xn)

)
≤ d
(
z, C(s, x)

)
+ |ϑ(sn)− ϑ(s)|+ L‖xn − x‖.

Since (xn)n and (sn)n converges to x and s respectively, it follows that d
(
z, C(sn, xn)

)
converge to 0. We then apply Lemma 1.1 to obtain that ζ ∈ η∂dC(s,x)(y). The
latter inclusion combined with (1.8) yields

lim sup
n→∞

σ
(
ξ, η∂dC(sn,xn)(yn)

)
≤ σ

(
ξ, η∂dC(s,x)(y)

)
,

which completes the proof. �
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2 Quasi-variational inequality and subsmooth-
ness property

We show in this section under suitable assumptions that there always exists a
solution for quasi-variational differential inequality/inclusion governed by sub-
smooth sets.

We shall be dealing with two multimappings G : [0, T ] × H ⇒ H with
nonempty closed convex values and C : [0, T ]×H ⇒ H with nonempty values.
In Theorem 2.1 they are required to satisfy the following assumptions:

(H1) The multimapping G is scalarly upper semicontinuous with respect to
both variables (that is, for each ξ ∈ H the function (t, x) → σ(ξ,G(t, x))
is upper semicontinuous), and for some real α ≥ 0

d
(
0, G(t, x)

)
≤ α

for all t ∈ [0, T ] and x ∈ H;

(H2) For all t ∈ [0, T ] and x ∈ H, the sets C(t, x) are nonempty and equi-
uniformly subsmooth (with parameter (t, x) ∈ [0, T ]×H);

(H3) There are real constants L1 ≥ 0, L2 ∈ [0, 1[ such that, for all t, s ∈ [0, T ]
and x, x′, y, y′ ∈ H∣∣d(y, C(t, x)

)
− d
(
y′, C(s, x′)

)∣∣ ≤ ‖y − y′‖+ L1|t− s|+ L2‖x− x′‖.

(H4) For any bounded subset A ⊂ H, the set C([0, T ] × A) is relatively ball-
compact, that is, the intersection of C([0, T ]× A) with any closed ball of
H is relatively compact in H.

Of course the inequality condition in (H3) is equivalent to∣∣d(y, C(t, x)
)
− d
(
y, C(s, x′)

)∣∣ ≤ L1|t− s|+ L2‖x− x′‖

for all t, s ∈ [0, T ] and x, x′, y ∈ H.

Theorem 2.1 Assume that H is a Hilbert space and that (H1), · · · , (H4) hold.
Then, for any u0 ∈ H with u0 ∈ C(0, u0), there exists a Lipschitz continuous
solution u : [0, T ]→ H of the differential inclusion

(D)


u̇(t) ∈ −N

C
(
t,u(t)

)(u(t)
)

+G
(
t, u(t)

)
a.e t ∈ [0, T ],

u(t) ∈ C
(
t, u(t)

)
∀t ∈ [0, T ], u(0) = u0,

with ‖u̇(t)‖ ≤ L1+2α
1−L2

a.e. t ∈ [0, T ].
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Proof. For each integer n ≥ 1, we consider the partition of [0, T ] with the
points

tnk = k
T

n
, k = 0, 1, · · · , n.

For each (t, x) ∈ [0, T ] × H denote by g(t, x) the element of minimal norm of
the closed convex set G(t, x) of H, that is,

g(t, x) = projG(t,x)(0).

Put xn0 := u0 ∈ C(tn0 , u0).

Step 1. We construct xn0 , x
n
1 , · · · , xnn inH such that for each k = 0, 1, · · · , n−

1, the following inclusions hold

xnk+1 ∈ C(tnk+1, x
n
k ) (2.1)

xnk +
T

n
g(tnk , x

n
k )− xnk+1 ∈ NC(tnk+1,x

n
k )

(xnk+1), (2.2)

along with the inequality ‖xn1 − xn0‖ ≤ (L1 + 2α)Tn , and for k = 1, · · · , n− 1

‖xnk+1 − xnk‖ ≤ (L1 + 2α)
T

n
+ L2‖xnk − xnk−1‖. (2.3)

The ball-compactness of C(tn1 , x
n
0 ) ensures that we can choose

xn1 ∈ ProjC(tn1 ,x
n
0 )

(
xn0 +

T

n
g(tn0 , x

n
0

))
and hence

xn1 ∈ C(tn1 , x
n
0 )

xn0 +
T

n
g(tn0 , x

n
0

)
− xn1 ∈ NC(tn1 ,x

n
0 )

(xn1 ) by (1.3).

On the other hand, using ‖g(tn0 , x
n
0 )‖ ≤ α, in view of hypothesis (H1) we have

‖xn1 − xn0‖ ≤
∥∥∥xn1 − (xn0 +

T

n
g(tn0 , x

n
0 )
)∥∥∥+

∥∥∥T
n
g(tn0 , x

n
0 )
∥∥∥

= d
(
xn0 +

T

n
g(tn0 , x

n
0 ), C(tn1 , x

n
0 )
)

+
∥∥∥T
n
g(tn0 , x

n
0 )
∥∥∥

≤ d
(
xn0 +

T

n
g(tn0 , x

n
0 ), C(tn0 , x

n
0 )
)

+ L1|tn1 − tn0 |+
∥∥∥T
n
g(tn0 , x

n
0 )
∥∥∥

≤ 2
∥∥∥T
n
g(tn0 , x

n
0 )
∥∥∥+ L1

T

n

≤
(
L1 + 2α

)T
n
. (2.4)

Now, suppose that, for 0, 1, · · · , k, with k ≤ n − 1 the points xn0 , x
n
1 , · · · , xnk

have been constructed, so that properties (2.1), (2.2) and (2.3) hold true. Since
C(tnk+1, x

n
k ) is ball-compact, then we can find

xnk+1 ∈ ProjC(tnk+1,x
n
k )

(
xnk +

T

n
g(tnk , x

n
k )
)
,
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and therefore,
xnk+1 ∈ C(tnk+1, x

n
k ),

xnk +
T

n
g(tnk , x

n
k )− xnk+1 ∈ NC(tnk+1,x

n
k )

(xnk+1) by (1.3).

By (H1) and (H3), we get

‖xnk+1 − xnk‖ ≤
∥∥∥xnk+1 −

(
xnk +

T

n
g(tnk , x

n
k )
)∥∥∥+

∥∥∥T
n
g(tnk , x

n
k )
∥∥∥

= d
(
xnk +

T

n
g(tnk , x

n
k ), C(tnk+1, x

n
k )
)

+
∥∥∥T
n
g(tnk , x

n
k )
∥∥∥

≤ d
(
xnk +

T

n
g(tnk , x

n
k ), C(tnk , x

n
k−1)

)
+
∥∥∥T
n
g(tnk , x

n
k )
∥∥∥

+ L1|tnk+1 − tnk |+ L2‖xnk − xnk−1‖

≤ 2α
T

n
+ L1

T

n
+ L2‖xnk − xnk−1‖.

The finite sequence xn0 , x
n
1 · · · , xnn satisfying (2.1), (2.2) and (2.3) is then con-

tructed by induction.
Fix any k = 1, · · · , n− 1. We observe that

‖xnk+1 − xnk‖ ≤ 2α
T

n
+ L1

T

n
+ L2‖xnk − xnk−1‖

≤ 2α
T

n
+ L1

T

n
+ L2

(
2α
T

n
+ L1

T

n
+ L2‖xnk−1 − xnk−2‖

)
= 2α

T

n
(1 + L2) + L1

T

n
(1 + L2) + L 2

2 ‖xnk−1 − xnk−2‖,

thus, we deduce that

‖xnk+1 − xnk‖ ≤ 2α
T

n
(1 + L2 + L 2

2 + · · ·+ L k−12 )

+ L1
T

n
(1 + L2 + L2

2 + · · ·+ L k−12 ) + L k2 ‖xn1 − xn0‖

=
T

n
(2α+ L1)(1 + L2 + L 2

2 + · · ·+ L k−12 ) + L k2 ‖xn1 − xn0‖.

From this and from (2.4) it follows from that

‖xnk+1 − xnk‖ ≤ (2α+ L1)
(
1 + L2 + L 2

2 + · · ·+ L k2
)T
n
,

and since 0 ≤ L2 < 1, it results that

‖xnk+1 − xnk‖ ≤
2α+ L1

1− L2

T

n
, (2.5)
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and the latter inequality still holds true for k = 0 according to (2.4). Further
for k = 0, · · · , n− 1,

‖xnk+1‖ ≤ ‖xnk+1 − xnk‖+ ‖xnk − xnk−1‖+ · · ·+ ‖xn1 − xn0‖+ ‖xn0‖

≤ ‖u0‖+
2α+ L1

1− L2
(k + 1)

T

n

≤ ‖u0‖+
2α+ L1

1− L2
T =: β. (2.6)

Step 2. Construction of un(·).
For any t ∈ [tnk , t

n
k+1] with k = 0, 1, · · · , n− 1, put

un(t) :=
tnk+1 − t
tnk+1 − tnk

xnk +
t− tnk

tnk+1 − tnk
xnk+1.

Thus, for almost all t ∈ [tnk , t
n
k+1],

u̇n(t) = − xnk
tnk+1 − tnk

+
xnk+1

tnk+1 − tnk
= − n

T
(xnk − xnk+1).

By construction, (2.1), (2.2), (2.3) and the latter equalities give

un(tnk+1) ∈ C
(
tnk+1, un(tnk )

)
(2.7)

−u̇n(t) ∈ N
C
(
tnk+1,un(tnk )

)(un(tnk+1)
)
− g
(
tnk , un(tnk )

)
a.e. t ∈ [tnk , t

n
k+1[ (2.8)

with (by (2.5))

‖u̇n(t)‖ =
n

T
‖xnk − xnk+1‖ ≤

L1 + 2α

1− L2
=: M. (2.9)

Put

δn(t) :=

{
tnk if t ∈ [tnk , t

n
k+1[

tnn−1 if t = T,

and

θn(t) :=

{
tnk+1 if t ∈ [tnk , t

n
k+1[

T if t = T.

Observe that for each t ∈ [0, T ], choosing k such that t ∈ [tnk , t
n
k+1[ if t < T and

k = n− 1 if t = T , we have

|δn(t)− t| ≤ |tnk+1 − tnk | =
T

n
, so δn(t)→ t as n→ +∞,

and similarly θn(t)→ t as n→ +∞. Further, the definitions of δn(·) and θn(·)
combined with (2.7) and (2.8) yield

un
(
θn(t)

)
∈ C

(
θn(t), un

(
δn(t)

))
for all t ∈ [0, T ] (2.10)
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−u̇n(t) ∈ N
C
(
θn(t),un

(
δn(t)

))(un(θn(t)
))
− g
(
δn(t), un

(
δn(t)

))
a.e t ∈ [0, T ].

(2.11)
Step 3. Convergence of a subsequence of (un(·)) to some absolutely contin-

uous mapping u(·).
Fix any t ∈ [0, T ] and consider, for any infinite subset N ⊂ N, the sequence
(un(t))n∈N . It follows from (2.6) and (2.10) that

un
(
θn(t)

)
∈ C

(
θn(t), un

(
δn(t)

))
∩ βB,

which implies that un(θn(t)) ∈ C([0, T ] × βB) ∩ βB. By (H4) the sequence
(un(θn(t))) is relatively compact, so there is an infinite subset N0 ⊂ N such
that (un(θn(t)))n∈N0

converges to some vector l(t) ∈ H. Putting hn(t) :=
un(θn(t))− un(t) for all n ∈ N0, by (2.9), we obtain

‖hn(t)‖ ≤
∫ θn(t)

t

‖u̇n(s)‖ds ≤M(θn(t)− t) −→
n→∞

0.

Then, (un(t))n∈N0
converges to l(t), thus the set {un(t) : n ∈ N} is relatively

compact in H. The sequence (un)n∈N being in addition equicontinuous accord-
ing to (2.9), this sequence (un)n∈N is relatively compact in CH(0, T ) , so we
can extract a subsequence of (un)n∈N (that we do not relabel) which converges
uniformly to some mapping u on [0, T ]. By the inequality (2.9) again there is
a subsequence of (u̇n)n∈N (that we do not relabel) which converges weakly in
L2
H(0, T ) to a mapping w ∈ L2

H(0, T ) with ‖w(t)‖ ≤ M a.e. t ∈ [0, T ]. Fixing
t ∈ [0, T ] and taking any ξ ∈ H, the above weak convergence in L2

H(0, T ) yields

lim
n→∞

∫ T

0

〈11[0,t](s)ξ, u̇n(s)〉ds =

∫ T

0

〈11[0,t](s)ξ, w(s)〉ds,

or equivalently

lim
n→∞

〈ξ, u0 +

∫ t

0

u̇n(s) ds〉 = 〈ξ, u0 +

∫ t

0

w(s) ds〉.

This means, for each t ∈ [0, T ], that un(t) −→
n→∞

u0 +
∫ t
0
w(s) ds weakly in H.

Since the sequence (un(t))n∈N also converges strongly to u(t) in H, it ensures

that u(t) = u0 +
∫ t
0
w(s) ds, so the mapping u(·) is absolutely continuous on

[0, T ] with u̇ = w. The mapping u(·) is even Lipschitz on [0, T ] with M as a
Lipschitz constant therein.

Step 4. We show now that u(·) is a solution of (D).
Let zn(t) := g(δn(t), un(δn(t))) for all t ∈ [0, T ]. Since

‖g(δn(t), un(δn(t)))‖ ≤ α for all n ∈ N and t ∈ [0, T ],

we may suppose (taking a subsequence if necessary) that the sequence (zn(·))
converges weakly in L2

H(0, T ) to a mapping z(·) ∈ L2
H(0, T ) with ‖z(t)‖ ≤ α a.e

t ∈ [0, T ].
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For all t ∈ [0, T ] we have u(t) ∈ C(t, u(t)). Indeed, by (H3) and (2.9)

d
(
un(t), C

(
t, u(t)

))
≤ ‖un(t)− un

(
θn(t)

)
‖+ L1|t− θn(t)|+ L2‖u(t)− un

(
δn(t)

)
‖

≤ (M + L1)|t− θn(t)|+ L2M |δn(t)− t|+ L2‖u(t)− un(t)‖,

then

d(un(t), C(t, u(t))) −→
n→∞

0, so d(u(t), C(t, u(t))) = 0 and u(t) ∈ C(t, u(t)).

Further, from the inequality ‖u̇n(t) − zn(t)‖ ≤ M + α =: γ a.e. and from
the inclusion (2.11) it follows for a.e. t ∈ [0, T ] that, according to (1.2) and
Proposition 1.3,

−u̇n(t) + zn(t) ∈ N
C

(
θn(t),un

(
δn(t)

))(un(θn(t)
))⋂

γB (2.12)

= γ∂d
C

(
θn(t),un

(
δn(t)

))(un(θn(t)
))
, (2.13)

zn(t) ∈ G
(
δn(t), un

(
δn(t)

))
. (2.14)

Since (−u̇n + zn, zn)n converges weakly in L2
H×H(0, T ) to (−u̇ + z, z), so by

Mazur theorem there are

ξn ∈ co {−u̇q + zq : q ≥ n} and ζn ∈ co {zq : q ≥ n} (2.15)

such that (ξn, ζn)n converges strongly in L2
H×H(0, T ) to (−u̇+ z, z). Extracting

a subsequence if necessary we suppose that (ξn(·), ζn(·))n converges a.e. to
(−u̇(·) + z(·), z(·)). Then, there is a Lebesgue negligible set S ⊂ [0, T ] such
that, for every t ∈ [0, T ]\S, on one hand (ξn(t), ζn(t)) → (−u̇(t) + z(t), z(t))
strongly in H, and on the other hand the inclusions (2.12) and (2.14) hold true
for every integer n as well as the inclusions

−u̇(t) + z(t) ∈
⋂
n

co
{
− u̇q(t) + zq(t) : q ≥ n

}
and z(t) ∈

⋂
n

co
{
zq(t) : q ≥ n

}
.

It results from (2.12) and (2.14) that for any n ∈ N, any t ∈ [0, T ] \ S, and for
any y ∈ H

〈
y,−u̇n(t) + zn(t)

〉
≤ σ

(
y, γ∂d

C

(
θn(t),un

(
δn(t)

))(un(θn(t)
)))

(2.16)

and 〈
y, zn(t)

〉
≤ σ

(
y,G

(
δn(t), un

(
δn(t)

)))
. (2.17)
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Further, for each n ∈ N and any t ∈ [0, T ]\S, from (2.15) we have〈
y, ξk(t)

〉
≤ sup
q≥n

〈
y,−u̇q(t) + zq(t)

〉
for all k ≥ n

and 〈
y, ζk(t)

〉
≤ sup
q≥n

〈
y, zq(t)

〉
for all k ≥ n,

and taking the limit in both inequalities as k → +∞ gives through (2.16) and
(2.17) 〈

y,−u̇(t) + z(t)
〉
≤ sup
q≥n

〈
y,−u̇q(t) + zq(t)

〉
≤ sup
q≥n

σ

(
y, γ∂d

C

(
θq(t),uq

(
δq(t)

))(uq(θq(t))))
and 〈

y, z(t)
〉
≤ sup
q≥n

〈
y, zq(t)

〉
≤ sup
q≥n

σ

(
y,G

(
δq(t), uq

(
δq(t)

)))
,

which ensures that〈
y,−u̇(t) + z(t)

〉
≤ lim sup

n→+∞
σ

(
y, γ∂d

C

(
θn(t),un

(
δn(t)

))(un(θn(t)
)))

and 〈
y, z(t)

〉
≤ lim sup

n→+∞
σ

(
y,G

(
δn(t), un

(
δn(t)

)))
.

Observe also by (H3) and Proposition 1.4 that the multimapping

gphC 3 (t, x, x′) 7→ ∂dC(t,x)(x
′)

takes on weakly compact convex values and is upper semicontinuous from gphC
into (H,w(H,H)), hence for each y ∈ H the restriction to gphC of the real-
valued function

(t, x, x′) 7→ σ
(
y, γ∂dC(t,x)(x

′)
)

is upper semicontinuous on gphC. Further, the extended real-valued function
(t, x) 7→ σ(y,G(t, x)) is also upper semicontinuous on [0, T ]×H by assumption
(H1). Since (

θn(t), un(δn(t)), un(θn(t)
)
∈ gphC for all n,

it follows from the two latter inequalities that, for every t ∈ [0, T ] \S and every
y ∈ H, 〈

y,−u̇(t) + z(t)
〉
≤ σ

(
y, γ∂d

C
(
t,u(t)

)(u(t)
))

and 〈
y, z(t)

〉
≤ σ

(
y,G

(
t, u(t)

))
,
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which ensures that −u̇(t) + z(t) ∈ γ∂dC(t,u(t))(u(t)) and z(t) ∈ G(t, u(t)), and
consequently

u̇(t) ∈ −N
C
(
t,u(t)

)(u(t)
)

+ z(t) a.e. ,

z(t) ∈ G
(
t, u(t)

)
a.e. ,

with
‖u̇(t)− z(t)‖ ≤ γ.

The proof is then complete. �

We turn now to the case where (in place of (H3)) the variation of C with
respect to the time t is absolutely continuous, that is, there exists an absolutely
function ϑ on [0, T ] with ϑ(0) = 0 such that

(H′3) |d
(
y, C(t, x)

)
− d
(
y′, C(s, x′)

)
| ≤ ‖y − y′‖+ |ϑ(t)− ϑ(s)|+ L‖x− x′‖

for all t, s ∈ [0, T ], x, x′, y, y′ in H. Note that, if there is an absolutely con-
tinuous function v : [0, T ] → R satisfying the above inequality, putting ϑ(t) =∫ t
0

(
|v̇(τ)|+ ε

)
dτ , the function ϑ fulfills the same inequality as well as the con-

ditions ϑ(0) = 0 and ϑ̇(·) ≥ ω with ω := ε > 0.

Theorem 2.2 Assume that H is a Hilbert space, that (H1), (H2), (H′3), and
(H4) hold. Then, for any u0 ∈ H with u0 ∈ C(0, u0), there exists an absolutely
continuous solution u : [0, T ]→ H of the differential inclusion (D).

Proof. According to what precedes the statement of the theorem, we may
and do suppose (in addition to the equality ϑ(0) = 0) that there is some real
ω > 0 such that ϑ̇(·) ≥ ω > 0. The absolutely continuous function ϑ is then

increasing and admits an increasing continuous inverse ϑ−1 : [0, T̂ ] → [0, T ],

where T̂ := ϑ(T ). Further, ϑ−1 is Lipschitz. Indeed, taking ŝ = ϑ(s), t̂ = ϑ(t)

in [0, T̂ ] with ŝ ≤ t̂ we can write

ϑ−1(t̂)− ϑ−1(ŝ) = t− s ≤ ω−1
∫ t

s

ϑ̇(r) dr = ω−1
(
ϑ(t)− ϑ(s)

)
= ω−1|t̂− ŝ|.

Now for each τ ∈ [0, T̂ ] put

Ĉ(τ, x) := C
(
ϑ−1(τ), x) and Ĝ(τ, x) := G

(
ϑ−1(τ), x

)
and note that

|d
(
y, Ĉ(τ, x)

)
− d
(
y, Ĉ(τ ′, x′)

)
| ≤ |ϑ−1(τ)− ϑ−1(τ ′)|+ L2‖x− x′‖
≤ ω−1|τ − τ ′|+ L2‖x− x′‖.

By Theorem 2.1 the differential inclusion (D̂) associated with Ĉ and Ĝ in place of

C and G and with initial condition u0 ∈ Ĉ(0, u0) (note that Ĉ(0, u0) = C(0, u0))

admits at least a Lipschitz solution. Let U be a solution of (D̂) on [0, T̂ ] and set
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u(t) := U(ϑ(t)) for all t ∈ [0, T ]. This mapping u is clearly absolutely continuous
and for almost all t ∈ [0, T ] we easily see (in a standard way) that

du

dt
(t) =

dϑ

dt
(t) U̇

(
ϑ(t)

)
. (2.18)

From this and what precedes it is not difficult (as, e.g., in the proof of [13,
Theorem 5.1]) to derive that u is a solution of (D). �

Assuming as in the above proof that ϑ̇(·) ≥ ω > 0, then (2.18) combined
with Theorem 2.1 easily provides estimate for

∥∥du
dt (t)

∥∥.

The next theorem proves the existence of solution on the whole interval
R+ := [0,+∞[. This requires to replace the above assumptions H1,H2,H′3,H4

by G1, · · · ,G4 when the time describes R+. In such a context the solution will
be locally absolutely continuous.

Theorem 2.3 Let G : R+×H ⇒ H be a multimapping which is scalarly upper
semicontinuous with respect to both variables. Assume that H is a Hilbert space,
that G1,G2,G3,G4 below hold:

(G1) There exists a non-negative function β(·) ∈ L∞loc(R+) such that

d
(
0, G(t, x)

)
≤ β(t)

for all t ∈ R+ and x ∈ H;

(G2) For all t ∈ R+ and x ∈ H, the sets C(t, x) are nonempty closed in H and
equi-uniformly subsmooth (with parameter (t, x) ∈ R+ ×H);

(G3) There are a real constant L2 ∈ [0, 1[ and a locally absolutely continuous
function ϑ on R+ such that, for all t, s ∈ R+ and x, x′, y, y′ ∈ H∣∣d(y, C(t, x)

)
−d
(
y′, C(s, x′)

)∣∣ ≤ ‖x− y‖+ |ϑ(t)−ϑ(s)|+L2‖x−x′‖;

(G4) For any real τ > 0 and any bounded subset A ⊂ H, the set C([0, τ ] × A)
is relatively ball-compact.

Then, given u0 ∈ H with u0 ∈ C(0, u0), there exists a mapping u : R+ → H
which is locally absolutely continuous on R+ and satisfies

(DR+
)



u̇(t) ∈ −N
C
(
t,u(t)

)(u(t)
)

+G
(
t, u(t)

)
a.e. t ∈ R+,

u(t) ∈ C
(
t, u(t)

)
∀t ∈ R+,

u(t) = u0 +
∫ t
0
u̇(s)ds ∀t ∈ R+.

Proof. Put Tk = k for all k ∈ {0}∪N. It will suffice to prove that Theorem
2.2 applies on each interval [Tk, Tk+1].
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According to assumptions G1,G2,G3,G4 we have that H1,H2,H′3,H4 hold
on the interval [T0, T1]. Since u0 ∈ C(T0, u0), by Theorem 2.3 there exists an
absolutely continuous mapping u0 : [T0, T1]→ H such that

u̇0(t) ∈ −N
C
(
t,u0(t)

)(u0(t)
)

+G
(
t, u0(t)

)
a.e t ∈ [T0, T1],

u0(t) ∈ C
(
t, u0(t)

)
∀t ∈ [T0, T1],

u0(T0) = u0.

Suppose u0, · · · , uk−1 have been constructed such that, for l = 0, · · · , k −
1, ul : [Tl, Tl+1] → H is absolutely continuous, ul(Tl) = ul−1(Tl), u

l(t) ∈
C(t, ul(t)) for all t ∈ [Tl, Tl+1] and

u̇l(t) ∈ −N
C
(
t,ul(t)

)(ul(t))+G
(
t, ul(t)

)
a.e t ∈ [Tl, Tl+1].

In an analogous way as above, the hypotheses G1,G2,G3,G4 ensure thatH1,H2,H′3,H4

hold on the interval [Tk, Tk+1] and we have uk−1(Tk) ∈ C(Tk, u
k−1(Tk)). It fol-

lows from Theorem 2.2 that there is an absolutely continuous mapping uk :
[Tk, Tk+1]→ H such that

u̇k(t) ∈ −N
C
(
t,uk(t)

)(uk(t)
)

+G
(
t, uk(t)

)
a.e t ∈ [Tk, Tk+1],

uk(t) ∈ C
(
t, uk(t)

)
∀t ∈ [Tk, Tk+1],

uk(Tk) = uk−1(Tk).

(2.19)

So, we obtain by induction uk for all k ∈ {0} ∪ N with the above properties.
Let u : R+ → H be the mapping defined by

u(t) := uk(t) for all t ∈ [Tk, Tk+1[ with k ∈ {0} ∪ N.

It is easily seen that u is locally absolutely continuous on R+. Therefore, it
results from (2.19) that

u̇(t) ∈ −N
C
(
t,u(t)

)(u(t)
)

+G
(
t, u(t)

)
a.e t ∈ R+,

u(t) ∈ C
(
t, u(t)

)
∀t ∈ R+,

u(0) = u0(T0) = u0.

This finishes the proof of the theorem. �

As direct consequences of Theorem 2.2 and Theorem 2.3 we obtain below
Corollary 2.1 and Corollary 2.2 respectively.
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Corollary 2.1 Let G : [0, T ] × H ⇒ H be a multimapping which is scalarly
upper semicontinuous with respect to both variables. Assume that H is a finite
dimensional Euclidean space and that the assumptions below hold:

• There exists a positive real number α such that

d
(
0, G(t, x)

)
≤ α

for all t ∈ [0, T ] and x ∈ H;

• For all t ∈ [0, T ] and each x ∈ H, the sets C(t, x) are nonempty closed in
H and equi-uniformly subsmooth (with (t, x) ∈ [0, T ]×H as parameter);

• There are a real constant L2 ∈ [0, 1[ and an absolutely continuous function
ϑ on [0, T ] such that, for all t, s ∈ [0, T ] and x, x′, y, y′ ∈ H∣∣d(y, C(t, x)

)
−d
(
y′, C(s, x′)

)∣∣ ≤ ‖y−y′‖+ |ϑ(t)−ϑ(s)|+L2‖x−x′‖.

Then, given u0 ∈ H with u0 ∈ C(0, u0), there exists a mapping u : [0, T ]→ H
which is absolutely continuous on [0, T ] and satisfies (D).

Corollary 2.2 Let G : R+ × H ⇒ H be a multimapping which is scalarly
upper semicontinuous with respect to both variables. Assume that H is a finite
dimensional Euclidean space and that the following assumptions hold:

• There exists a non-negative function β(·) ∈ L∞loc(R+) such that

d
(
0, G(t, x)

)
≤ β(t)

for all t ∈ R+ and x ∈ H;

• For all t ∈ R+ and each x ∈ H, the sets C(t, x) are nonempty closed in
H and equi-uniformly subsmooth (with (t, x) ∈ R+ as paremeter);

• There are a real constant L2 ∈ [0, 1[ and a locally absolutely continuous
function ϑ on R+ such that, for all t, s ∈ R+ and x, x′, y, y′ ∈ H∣∣d(y, C(t, x)

)
−d
(
y′, C(s, x′)

)∣∣ ≤ ‖y−y′‖+ |ϑ(t)−ϑ(s)|+L2‖x−x′‖.

Then, given u0 ∈ H with u0 ∈ C(0, u0), there exists a mapping u : R+ → H
which is locally absolutely continuous on R+ and satisfies (DR+

).

Finally, when H is separable, in all the above results, the scalar upper semi-
continuity of G with respect to both variables can be replaced, through appro-
priate reformulations, by the separate measurability of G with respect to t and
the scalar upper semicontinuity with respect to x. Indeed, using a growth con-
dition in place of (H1) it suffices as in [5] (see also [13, Theorem 4.1]) to apply
the version of Scorza-Dragoni theorem (for separately measurable and scalarly
upper semicontinuous multimapping) and the version of Dugundji extension
theorem (for upper semicontinuous multimapping) (see, e.g., [3]).
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sous lisses, Ph.D. thesis, Université de Montpellier (2013).
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