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Abstract. For a locally Lipschitz integral functional If on L1(T,Rn) associated
with a measurable integrand f , the limiting subdifferential and the approximate
subdifferential never coincide at a point x0 where f(t, ·) is not subdifferentially
regular at x0(t) for a.e. t ∈ T . The coincidence of both subdifferentials occurs
on a dense set of L1(T,Rn) if and only if f(t, ·) is convex for a.e. t ∈ T . Our
results allow us to characterize Aubin’s Lipschitz-like property as well as the
convexity of multivalued mappings between L1-spaces. New necessary optimal-
ity conditions for some Bolza problems are also obtained.
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1 Introduction

Calculus of variations problems of Bolza type are known to involve a cost func-
tion in the integral form

JL(y) :=

∫ b

a

L(t, y(t), ẏ(t)) dt

which has to be minimized under some specific dynamical and endpoints con-
straints. The present paper is aimed at comparing the approximate (or Ioffe’s)
subdifferential and the limiting (or Mordukhovich’s) subdifferential of such above
functionals. We will show that those two types of subdifferentials do not co-
incide in general in the setting of the above integral functionals. In fact, our
analysis will reveal that this noncoincidence holds even for the class of integral
functionals

If (x) :=

∫ b

a

f(t, x(t)) dt
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which depend only on the velocity x(t) = ẏ(t).
The concept of limiting subdifferential has been introduced first in finite dimen-
sional space by Mordukhovich [29, 30, 31] and then in the context of Banach
space by Kruger and Mordukhovich [26, 27] for extended real-valued functions.
This subdifferential corresponds to the collection of weak-star sequential limiting
points of the so-called Fréchet ε-subdifferential.
The other concept of approximate subdifferential has been introduced and de-
veloped by Ioffe in [15, 16]. The construction of this subdifferential is based
on weak-star topological limits of the so-called Dini subdifferentials and Dini
ε−subdifferentials.
A number of efficient chain rules are actually available for both concepts in
infinite dimensions, some of them requiring certain geometric assumptions on
the structure of Banach spaces. We refer the reader to the recent book [33]-[34]
and the papers [16]-[17], [18]-[19], [20]- [24], and the references therein for more
details and further information.
The limiting subdifferential is always included in the approximate subdifferen-
tial, and both concepts coincide in finite dimension and in some special infinite
dimensional spaces. The context is different for integral functionals. We show
here that there is no coincidence between the limiting and approximate subdif-
ferentials at a point x0 ∈ L1(T,Rn) for locally Lipschitz integral functional in
L1(T,Rn) whose integrand is not (subdifferentially) regular at x0. When the
coincidence holds at a regular point, we also give a useful description of the
limiting subdifferential in such a case.
The results that we provide for the limiting subdifferential of integral function-
als allow us on one hand to obtain characterization of Aubin’s Lipschitz-like
property as well as the convexity of multivalued mappings between L1-spaces,
and on the other hand to establish new necessary optimality conditions for the
following Bolza problem

min `(y(a), y(b)) +

∫ b

a

L(t, y(t), ẏ(t))dt. (1)

As we will show in the last section, the coincidence of the limiting subdifferen-
tial and the approximate subdifferential at the (local) minimum point z of (1)
produces a new optimality condition of the type

(ṗ(t), p(t)) ∈ ∂FenL(t, z(t), ż(t)) a.e.t ∈ [a, b]

for some absolutely continuous p with values in Rn. Here ∂FenL(t, z(t), ż(t))
denotes the Fenchel subdifferential of L with respect to (z(t), ż(t))
The organization of the paper starts with definitions and notations in Section 2.
In Section 3, we recall some important cases where the limiting and approximate
subdifferentials coincide for certain infinite dimensional spaces. In Section 4 we
prove the result mentioned above concerning the noncoincidence at a fixed point
x0 ∈ L1(T,Rn) of the limiting and approximate subdifferentials of an integral
functional If whose integrand f(t, ·) is not (subdifferentially) regular at x0(t)
for almost all t provided that the corresponding measure space is atomless. We
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also show that the coincidence of both subdifferentials occurs on a dense set of
L1(T,Rn) if and only if the measurable integrand is convex, that is, for almost
all t the function f(t, ·) is convex. In the same section, we give a characterization
of the Lipschitz property of If in terms of that of f(t, ·). In Section 5, we apply
the obtained results to characterize Aubin’s Lipschitz-like property as well as the
convexity of multivalued mappings between L1-spaces. Finally, the last section
is concerned with necessary optimality conditions for Bolza problem (1).

2 Background

In order to make the paper as short as possible, some definitions and the com-
plete wording of the results will not be repeated here, and the reader is referred
to [29]-[34] and [15]-[16] if required.
Let X be a Banach space endowed with the norm denoted by ‖ · ‖ with which
we associate the distance function d(·, S) to a set S. By B(x, r) we denote the
open ball centered at x and of radius r. The topological dual space of X will
be denoted by X∗ and the pairing between X and X∗ by 〈·, ·〉.
For a function f and a set S, we write x

f→xo and x
S→xo to express x→ x0 with

f(x)→ f(x0) and x→ x0 with x ∈ S, respectively.
Let f be an extended real-valued function on X. The limiting (or Mord-
dukhovich’s) subdifferential of f at x0 is the set

∂Lf(x0) = seq Lim sup

x
f→x0, ε↓0

∂Fε f(x),

where seqLim sup stands for the weak-star sequential upper limit of subsets in
X∗, and where for ε ≥ 0

∂Fε f(x) = {x∗ ∈ X∗ : lim inf
h→0

f(x+ h)− f(x)− 〈x∗, h〉
‖ h ‖

≥ −ε}

is the Fréchet ε-subdifferential of f at any x where f is finite. We adopt the
convention ∂Fε f(x) = ∅ when |f(x)| = +∞. We also put ∂F f(x) = ∂F0 f(x) for
ε = 0.
The limiting normal cone to a closed set S ⊂ X at a point x0 ∈ S is given by

NL(S, x0) = ∂LδS(x0),

where δS denotes the indicator function of S, i.e., δS(x) = 0 if x ∈ S and
δS(x) = +∞ otherwise. The theory of Fréchet and limiting subdifferentials are
developed, with fairly comprehensive references and remarks, in the paper by
Mordukhovich and Shao [32] and in Mordukhovich’s books [33, 34].
If f is an extended real-valued function on X, we write for any subset S of X

fS(x) =

{
f(x) if x ∈ S,
+∞ otherwise.
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The function f−(x, ·) with

f−(x, h) = lim inf
u→h
r↓0

r−1(f(x+ ru)− f(x))

is the lower Dini directional derivative of f at x with |f(x)| < +∞. The Dini
ε-subdifferential of f at x is the set

∂−ε f(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ f−(x;h) + ε‖h‖,∀h ∈ X}

for x ∈ Dom f and ∂−ε f(x) = ∅ if x /∈ Dom f, where Dom f := {x ∈ X : |f(x)| <
+∞} denotes the effective domain of f . For ε = 0 we write ∂− f(x).
Let F(X) be the collection of finite dimensional subspaces of X. The approxi-
mate (or Ioffe’s) subdifferential of f at x0 ∈ Dom f is defined by the following
expressions (see Ioffe [15]-[16])

∂Af(x0) =
⋂

L∈F(X)

Lim sup

x
f→x0

∂−fx+L(x) =
⋂

L∈F(X)

Lim sup
x

f
→xo
ε↓0

∂−ε fx+L(x),

where the weak-star topological upper limit Lim sup

x
f→x0

∂−fx+L(x) is defined by

Lim sup

x
f→x0

∂−fx+L(x) = {x∗ ∈ X∗ : x∗ = w∗ − lim x∗i , x
∗
i ∈ ∂−fxi+L(xi), xi

f→x0},

that is, the set of w∗-limits of all such nets.
As for the limiting subdifferential, the approximate normal cone to a closed set
S ⊂ X at x0 ∈ S is defined by

NA(S, x0) = ∂AδS(x0). (2)

In [16], Ioffe gave the following geometrical characterization of the approximate
subdifferential

∂Af(x0) = {x∗ ∈ X∗ : (x∗,−1) ∈ NA(epif, (x0, f(x0)))}. (3)

For weak trusthworthy Banach spaces (including separable Banach spaces),
Ioffe established that the approximate subdifferential takes the following simpler
form:

∂Af(x0) = Lim sup
x

f
→xo
ε↓0

∂−ε f(x).

Through the distance function d(·, S) (also denoted in the paper by dS) in place
of the indicator function in (2), a geometric concept of normal cone has been
also considered in [16]. The G-normal cone to a closed set S ⊂ X at x0 ∈ S is
defined by

NG(S, x0) = R+∂Ad(x0, S).
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With this normal cone, taking (3) into account and as for the Clarke subdiffer-
ential (see (4)) one associates ([16]) the G-subdifferential of f at x0 as follows:

∂Gf(x0) = {x∗ ∈ X∗ : (x∗,−1) ∈ NG(epif, (x0, f(x0)))}.

The limiting subdifferential, the G-subdifferential, and the approximate subd-
ifferential are infinite-dimensional extensions of the nonconvex subdifferential
introduced in [29]. We always have the following inclusions:

∂Lf(x0) ⊂ ∂Gf(x0) ⊂ ∂Af(x0).

The approximate subdifferential may be bigger than the Clarke’s subdifferential
∂Cf(x0) characterized geometrically in terms of the Clarke’s normal cone as
follows:

∂Cf(x0) = {x∗ ∈ X∗ : (x∗,−1) ∈ NC(epif, (x0, f(x0)))}. (4)

The limiting subdifferential and the G-subdifferential are always included in
the Clarke’s one. When f is finite around x0 and locally Lipschitz there, the
Clarke’s subdifferential (see [7]) takes the following form (which is the Clarke’s
original definition)

∂Cf(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ f◦(x;h)∀h ∈ X},

where

f◦(x;h) := lim sup
r→0+

x→x0

f(x+ rh)− f(x)

r
.

Both Clarke’s subdifferential and the approximate subdifferential obey the fol-
lowing sum rule:

∂(f + g)(x0) ⊂ ∂f(x0) + ∂g(x0)

provided that one of the two functions f, g (: X 7→ R∪{+∞}) is locally Lipschitz
around x0. This calculus rule also holds for the limiting subdifferential but in
Asplund spaces.
We know that Clarke’s subdifferential and the approximate subdifferential of
locally Lipschitz functions are nonempty sets in any general Banach space and
that the limiting subdifferential of a locally Lipschitz function is also a nonempty
set provided that the space is Asplund.

• Can we get the same conclusion of nonemptiness for the limiting subdifferential
outside Asplund spaces? Here is an example including both situations.

Example 2.1 Let X = L1[0, 1] and let f(u) =
∫ 1

0
| sinu(t)|dt and g = −f .

Then ∂L(f + g)(0) = {0} while ∂Lf(0) = {0} and ∂Lg(0) = ∅. We refer to
section 4 for results justifying the two latter equalities.
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3 Relationships between the limiting subdiffer-
ential and the approximate subdifferential

In this section, we will provide and review certain cases where some of the subd-
ifferentials considered in the previous section coincide. Let us begin by recalling
a connection between limiting subdifferential, approximate subdifferential and
the following sequential constructions of approximate-like subdifferential

∂seq
A,+f(x0) = seq Lim sup

ε−→0+

x
f
−→x0

∂−ε f(x)

and
∂seq
A f(x0) = seq Lim sup

x
f−→x0

∂−f(x).

Mordukhovich and Shao [32] showed that in Asplund space and for a locally
Lipschitz function f at x0

cl∗(∂Lf(x0)) = cl∗(∂seq
A,+f(x0)) = cl∗(∂seq

A f(x0)) = ∂Af(x0),

where ”cl∗” denotes the weak-star topological closure. They showed that in
weakly compactly generated Asplund spaces, one has in fact the following
stronger equalities

∂Lf(x0) = ∂seq
A,+f(x0) = ∂seq

A f(x0) = ∂Af(x0)

for a locally Lipschitz function f at x0.

Recall that X is weakly compactly generated (WCG) if there exists a weakly
compact set K such that X = cl(span(K)). Clearly all reflexive Banach spaces
and all separable Banach spaces are weakly compactly generated. For the case
where X is an Asplund space, there are precise characterizations of the WCG
property (see [8] and [9]) which imply, in particular, the existence of a Fréchet
differentiable renorm.

Using Proposition 3.1 in [25], we easily see that

∂Af(x0) = ∂seq
A,+f(x0)

provided that X is a WCG space and there exist a locally compact cone K∗

and a real number r > 0 such that

∂−ε f(x) ⊂ K∗ + ρ(ε)BX∗ ,∀x ∈ x0 + rBX ,∀ε ∈]0, r[,

where BX∗ denotes the closed unit ball of X∗, ρ(ε)→ 0 as ε→ 0+ and K∗ is a
weak-star locally compact cone. A set K∗ ⊂ X∗ is said to be (weak-star) locally
compact if for each point x∗ in K∗ there exists a weak-star neighbourhood V
of x∗ such that cl∗V ∩K∗ is weak-star compact. Many important properties of
these sets are listed in [28] and [18].
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In [18], the first author extended the result of Mordukhovich and Shao [32] to
the non-Lipschitz case.

Theorem 3.1 ([18]) Let X be an Asplund space and f be an extended real-
valued lower semicontinuous function on X. Then

cl∗(∂seq
A,+f(x0)) = cl∗(∂seq

A f(x0)) = cl∗(∂Lf(x0))

provided that there exist a closed and locally compact cone K∗ in X∗ endowed
with its weak-star topology and some real number r > 0 such that

∂Ld(x, α; epif) ⊂ K∗ ×R,∀(x, α) ∈ (x0 + rBX)× (f(x0) + rBR) ∩ epif. (5)

If in addition X is WCG, then

∂Af(x0) = ∂Lf(x0) = ∂seq
A,+f(x0) = ∂seq

A f(x0).

Remark 3.1 Using Theorem 3 in [17] and Theorem 5.6 in [18], one obtains the
equivalence between relation (5) and the fact that epif is compactly epi-Lipschitz
([1]-[2]) at (x0, f(x0)).

What happens outside Asplund spaces? We will introduce in the following
section a large class of functions whose limiting and approximate subdifferentials
never coincide.

4 Noncoincidence of the limiting subdifferential
and the approximate subdifferential

In this section, we provide a large class of functions over L1(T,Rn) for which
at a fixed point the limiting subdifferential and the approximate subdifferential
never coincide. For this class we will show that :

• The Clarke subdifferential and the approximate subdifferential coincide at
this point;

• The Clarke subdifferential is sequentially weak-star closed at this point;

• The limiting subdifferential is never equal to the approximate subdiffer-
ential at this point.

We also study the global coincidence at all points of L1(T,Rn) between the
limiting subdifferential and the approximate subdifferential. We establish that

• such a global coincidence holds for a Lipschitz integral functional if and
only if the associated measurable integrand is convex.
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Let (T, T , µ) be a measure space with an atomless 1 σ−finite positive measure
and a µ-complete tribe T . The Lebesgue space of classes of integrable functions
defined on T with values in Rn and endowed with its strong natural topology
will be denoted by L1(T,Rn). As usual, Rn is endowed with its Borel tribe B.
Throughout, we also assume that the tribe T is such that the space L1(T,Rn)
is separable.
Let x0 ∈ L1(T,Rn) and f : T ×Rn 7→ R ∪ {+∞} be an extended real-valued
function. We use the notation ft for the function f(t, ·), i.e., ft(u) = f(t, u)
for all u ∈ Rn and t ∈ T . When the function f is T ⊗ B-measurable, we will
say that f is a measurable integrand. Then (because of the completeness of T )
the function f is a normal integrand in the sense of [4, 35] if and only if (see
Corollary 14.34 in [35]) it is a measurable integrand and the functions f(t, ·) are
lower semicontinuous.
We say that an extended real-valued function g on some Banach space X is
(Dini) subdifferentially regular at u0 if

∂−g(u0) = ∂Cg(u0),

and when g is locally Lipschitz at u0, this is equivalent to the equality between
the lower Dini directional derivative g−(u0, h) and the Clarke’s one g◦(u0, h) at
u0 in each direction h. We say that a closed set S ⊂ X is (metrically subdif-
ferentially) regular at u0 ∈ S if the distance function d(·, S) is subdifferentially
regular at u0. We also recall that the Fenchel subdifferential of the extended
real-valued function g at a point u0 ∈ X is the set

∂Feng(u0) = {u∗ ∈ X∗ : 〈u∗, u− u0〉+ g(u0) ≤ g(u), ∀u ∈ X}.

Now, we are able to introduce the following class with which this section will
be concerned for a large part: Let x0 ∈ L1(T,Rn) and set

C(x0) = {f :T ×Rn 7→ R ∪ {+∞}measurable integrand,

f(t, ·) is not subdifferentially regular at x0(t), µ− a.e. t ∈ T}.

The integral functional associated with any measurable integrand f on T ×Rn

is given by

If (x) =

∫
T

f(t, x(t)) dµ ∀x ∈ L1(T,Rn)

and the subdifferential of f will be taken with respect to the second variable,
that is, ∂Lf(t, u) = ∂Lft(u) for any u ∈ Rn.
If the integral functional If is locally Lipschitz on L1(T,Rn), the atomless
property of the measure µ assures us, according to Corollary 3.4 in Giner [12]
that

∂CIf (x0) = ∂seq
A If (x0)

= ∂AIf (x0)

= {x∗ ∈ L∞ : x∗(t) ∈ ∂Cft(x0(t)) a.e. t ∈ T}.
(6)

1A measure is atomless if every set having positive measure contains a subset having strictly
smaller but positive measure.
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In fact, the local Lipschitz property of the integral functional is related to the
Lipschitzian continuity of the associated integrand as stated in the following
theorem which will be involved in several places in the development below. The
theorem is contained in Theorem 3.1, Theorem 3.2, and Corollary 3.3 in Giner
[11]. For the convenience of the reader, we provide here a quite simple proof. We
also mention that Lemma 4.1 below on which the proof of the theorem strongly
depends, will be needed later in the paper.

Theorem 4.1 Let f : T×Rn → R be a measurable real-valued integrand whose
associated integral functional If is finite on L1(T,Rn) and let γ ≥ 0. Then the
following assertions are equivalent:
(a) The integral functional If is γ-Lipschitz on L1(T,Rn);
(b) The integral functional If is γ-Lipschitz on some ball in L1(T,Rn);
(c) The measurable integrand f is γ-Lipschitz, i.e., for almost all t ∈ T the
function f(t, ·) is γ-Lipschitz on Rn.

Proof. The implications (a) ⇒ (b) and (c) ⇒ (a) are obvious. It remains to
prove the implication (b)⇒ (c). So suppose that (b) holds, i.e., there exist some
x̄ in L1(T,Rn) and some δ > 0 such that

If (x)− If (x′) ≤ γ‖x− x′‖ ∀x, x′ ∈ BL1(T,Rn)(x̄, δ).

Then for the measurable integrand g : T×Rn×Rn → R defined by g(t, u, u′) :=
f(t, u′)− f(t, u) + γ‖u′ − u‖, the point (x̄, x̄) is a local minimum point of Ig in
L1(T,Rn ×Rn). According to Lemma 4.1 below, there exists some negligible
set N ⊂ T such that for each t ∈ T \N one has

f(t, u) ≤ f(t, u′) + γ‖u′ − u‖ ∀u, u′ ∈ Rn,

which completes the proof. �

The lemma used above is a consequence of a theorem in [10].

Lemma 4.1 Let g : T × Rn → R be a measurable integrand and let x0 ∈
L1(T,Rn) be a point where Ig is finite. If x0 is a local minimum of Ig in
L1(T,Rn), then there exists some negligible set N ⊂ T such that for each t ∈
T \N one has

g(t, x0(t)) ≤ g(t, u) ∀u ∈ Rn.

Proof. By Giner’s theorem in [10] we know that for any x ∈ L1(T,Rn) we have

g(t, x0(t)) ≤ g(t, x(t)) µ− a.e. t. (7)

Put ϕ(t) := inf
u∈Rn

[g(t, u)− g(t, x0(t))]. The completeness of the tribe T assures

us that ϕ is measurable (see Lemma III-39 in [4]) and obviously ϕ(t) ≤ 0 for all
t ∈ T . On the other hand, the integrand h given by h(t, u) := g(t, u)−g(t, x0(t))
being measurable with Ih(x0) finite, we have

inf
x∈L1(T,Rn)

Ih(x) =

∫
T

inf
u∈Rn

h(t, u) dµ
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according to Theorem 14.60 in [35] whose result and proof still hold for any
measurable integrand when the tribe is complete thanks to Lemma III-39 and
Theorem III-22 in [4]. This tells us according to (7) and to the definition of
ϕ that

∫
T
ϕ(t) dµ ≥ 0. Combining this with the fact that ϕ(·) ≤ 0 yields that

ϕ(t) = 0 for almost all t ∈ T . Consequently, for almost all t

g(t, x0(t)) ≤ g(t, u) ∀u ∈ Rn,

which finishes the proof. �

Now recall that Theorem 3.2 in Chieu [5] says under the atomless property of
the measure µ that for any x ∈ L1(T,R)

∂LIf (x) = ∂F If (x)

= {x∗ ∈ L∞ : x∗(t) ∈ ∂Fenft(x(t))µ− a.e. t ∈ T}
(8)

provided the integral functional If is finite on L1(T,Rn).
Note that, based on the definition of the limiting subdifferential, we may easily
show that Chieu’s Theorem 3.2 [5] is equivalent to Lemma 4.1.

We can now state the theorem concerning the class C(x0).

Theorem 4.2 Let f ∈ C(x0) be such that If is finite on L1(T,Rn) and Lips-
chitz on L1(T,Rn). Then

∂LIf (x0)  ∂seq
A If (x0) (9)

∂CIf (x0) = ∂seq
A If (x0) = ∂AIf (x0). (10)

Proof. Relation (10) follows from Giner’s equality (6). Let us establish
the strict inclusion (9). As we said before the inclusion ∂LIf (x0) ⊂ ∂seq

A If (x0)
is always true. We will show that it is strict, i.e., there exists an element of
∂seq
A If (x0) which is not contained in ∂LIf (x0). So, suppose the contrary, i.e.,
∂LIf (x0) = ∂seq

A If (x0). Using relation (10), we get

∂CIf (x0) = ∂LIf (x0).

Now invoking Chieu’s equality (8), we obtain

∂LIf (x0) = ∂F If (x0) ⊂ {x∗ ∈ L∞ : x∗(t) ∈ ∂F f(t, x0(t)) µ− a.e.}.

Further, by the last member of Giner’s equality (6) we have

{x∗ ∈ L∞ : x∗(t) ∈ ∂F f(t, x0(t)) µ− a.e.} ⊂ ∂CIf (x0),

and hence

∂CIf (x0) = ∂−If (x0) = {x∗ ∈ L∞ : x∗(t) ∈ ∂F f(t, x0(t)) µ− a.e.}.
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Using Theorem 3.1 in [12], we get the subdifferential regularity of f(t, ·) at x0(t)
for almost all t and this contradiction completes the proof. �

Can subdifferential regularity imply coincidence of the limiting subdifferential
and the approximate subdifferential? Unfortunately, the following example
shows that it is not the case.

Example 4.1 Consider the function ft(u) = f(t, u) = | sinu| and the set T =
[0, 1]. Then

1. f−t (0, h) = f◦t (0, h) = |h|, (hence f(t, ·) is (Dini) subdifferentially regular
at 0);

2. ∂LIf (0) = {0};

3. ∂AIf (0) = BL∞ .

The equalities concerning ∂LIf (0) and ∂AIf (0) follow easily from the equalities
between the first and last members in (8) and in (6) respectively.

The following corollary is a direct consequence of Theorem 4.2. It provides a
sufficient condition for the regularity of a family of sets.

Corollary 4.1 Let M : T ⇒ Rn be a closed-valued and measurable multivalued
mapping and x0 ∈ L1(T,Rn), with x0(t) ∈ M(t) for all t ∈ T . Consider the
integral functional IM defined on L1(T,Rn) by IM (x) =

∫
T
d(x(t),M(t)) dµ. If

∂LIM (x0) = ∂AIM (x0), then for µ-almost all t ∈ T , the set M(t) is (subdiffer-
entially) regular at x0(t).

We point out the following fact concerning the measurable multivalued mapping
M . If the set Σ1(M) of its selections belonging to L1(T,Rn) is nonempty, we
have (see, for example, Theorem 2.2 in [14] for the second equality)

IM (x) =

∫
T

inf
u∈M(t)

d(x(t), u) dµ

= inf
y(·)∈Σ1(M)

∫
T

d(x(t), y(t)) dµ

= d(x,Σ1(M)),

that is, IM is the distance function to Σ1(M) in L1(T,Rn).

What about the converse in Corollary 4.1? Unfortunately, the following example
shows that this may not happen.

Example 4.2 For each t ∈ T := [0, 1], consider the constant set M(t) =
{(x, r) ∈ R2 : | sinx| ≤ r}. Then M(t) is regular at (0, 0) for each t ∈ T ,
but ∂LIM (0, 0) 6= ∂AIM (0, 0). Proposition 4.1 below provides the justification.
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This example can be extended to more general situations in the following propo-
sition. Its statement also argues the example. Recall first that as usual 1T0

denotes the characteristic function of a subset T0 ⊂ T and hence 1T0
is the

constant function taking the value 1 at any point of T0.
In the proposition and its proof, the space L1

Rn ×L1
R will be endowed with the

norm
‖(x, r)‖L1

Rn×L1
R

= ‖x‖L1
Rn

+ ‖r‖L1
R

and hence the corresponding dual norm in L∞Rn × L∞R is

‖(x∗, s)‖L∞
Rn×L∞R = max{‖x‖L∞

Rn
, ‖r‖L∞R },

where L1
Rn := L1(T,Rn), L1

R := L1(T,R), L∞Rn := L∞(T,Rn) and L∞R :=
L∞(T,R). The proof of the proposition also uses the concept of Bouligand
contingent cone K(S, x0) of a subset S of a Banach space X at a point x0 ∈ S.
Recall that a vector v ∈ K(S, x0) if and only if there exist a sequence (vk)k
converging to v and a sequence of positive numbers sk ↓ 0 such that x0+skvk ∈ S
for all integers k.

Proposition 4.1 Let f : T ×Rn → R be a normal integrand for which If is
locally Lipschitzian at 0. For M(t) := epi f(t, ·), consider the set S := Σ1

M , i.e.,

S = {(x, r) ∈ L1
Rn × L1

R : f(t, x(t)) ≤ r(t), a.e. t ∈ T}.

Suppose that for all t ∈ T , f(t, 0) = 0 and f(t, ·) is subdifferentially regular at
0. Then the following inclusions hold

∂−If (0)× {−1T } ⊂ R+∂
−dS(0, 0) (11)

and
∂−dS(0, 0) ∩ L∞Rn × {−1T } ⊂ ∂−If (0)× {−1T }. (12)

Further, the following assertions (a) and (b) are equivalent:

(a) (x∗,−1T ) ∈ R+∂
−dS(0, 0)⇐⇒ (x∗,−1T ) ∈ R+∂

F dS(0, 0).

(b) ∂−If (0) = ∂F If (0) = {x∗ ∈ L∞Rn : x∗(t) ∈ ∂Fenft(0) a.e. t ∈ T}.

Proof. According to Theorem 4.1 and to the local Lipschitz property of If
at 0, the function f is a γ-Lipschitz integrand for some γ ≥ 0, that is, for all t
outside a negligible set in T and all u, u′ ∈ Rn

|f(t, u)− f(t, u′)| ≤ γ‖u− u′‖. (13)

Let us start with the proof of (11). Observe first that the subdifferential regu-
larity assumption of the integrand ensures that

x∗ ∈ ∂−If (0)⇐⇒ 〈x∗, h〉 ≤
∫
T

f−t (0, h(t)) dµ ∀h ∈ L1
Rn

12



or equivalently

〈x∗, h〉 ≤
∫
T

r(t) dµ− If (h) +

∫
T

f−t (0, h(t)) dµ ∀(h, r) ∈ S

or equivalently there exists some constant K > 0 such that

〈x∗, h〉 ≤
∫
T

r(t) dµ−If (h)+

∫
T

f−t (0, h(t)) dµ+KdS(h, r) ∀h ∈ L1
Rn , r ∈ L1

R,

because the functions h 7→ If (h) and h 7→
∫
T
f−t (0, h(t)) dµ are globally Lip-

schitz on L1
Rn according to (13). Taking into account the subdifferential reg-

ularity of f(t, ·) again and the equality lim
s→0+

If (sh)

s
=

∫
T

f−t (0, h(t)) dµ, we

get

〈x∗, h〉 ≤
∫
T

r(t) dµ+Kd−S ((0, 0), (h, r)) ∀h ∈ L1
Rn , r ∈ L1

R,

which is equivalent to say that (x∗,−1T ) ∈ K∂−dS(0, 0). So, the inclusion of
(11) is established.
Let us prove the inclusion of (12).
Take any (x∗,−1T ) ∈ ∂−dS(0, 0). Then ‖(x∗,−1T )‖L∞

Rn×L∞R ≤ 1 and (x∗,−1T )
is in the negative polar of the contingent cone K(S, (0, 0)) of S at (0, 0), i.e.,

〈x∗, v〉 −
∫
T

ρ(t) dµ ≤ 0, ∀(v, ρ) ∈ K(S, (0, 0)). (14)

Let (h, r) ∈ S and sk → 0+. Then

f(t, skh(t)) ≤ sk[r(t) +
f(t, skh(t))

sk
− f(t, h(t))] a.e. t ∈ T. (15)

Set wk(t) = f(t,skh(t))
sk

− f(t, h(t)) and w(t) = f−t (0, h(t)) − f(t, h(t)). Since

| f(t,skh(t))
sk

| ≤ γ|h(t)|, the Lebesgue dominated convergence theorem yields wk →
w in L1

R, and hence (h, r+w) ∈ K(S, (0, 0)) because (15) means that sk(h, r+
wk) ∈ S for all integers n. This allows us to get according to (14)

〈x∗, h〉 ≤
∫
T

r(t) dµ+

∫
T

w(t) dµ, ∀(h, r) ∈ S,

that is,

〈x∗, h〉 ≤
∫
T

r(t) dµ+ I−f (0, h)− If (h), ∀(h, r) ∈ S. (16)

Fix now any h ∈ L1
Rn and observe that for r(t) := f(t, h(t)) we have r ∈ L1

R.
Consequently, (h, r) ∈ S and by (16) we have

〈x∗, h〉 ≤ I−f (0, h),

and hence x∗ ∈ ∂−If (0). This finishes the proof of the inclusion in (12) of the
proposition.
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Let us now establish the equivalence between (a) and (b). Let us start with the
implication (a) =⇒ (b). Take any x∗ ∈ ∂−If (0). The inclusion of (11) says that
(x∗,−1T ) ∈ R+∂

−dS(0, 0). By (a) we have (x∗,−1T ) ∈ R+∂
F dS(0, 0), that is,

α(x∗,−1T ) ∈ ∂F dS(0, 0) for some α > 0. Putting g(t, u, s) := d((u, s), epi ft)
for all (u, s) ∈ Rn × R, the observation after Corollary 4.1 assures us that
α(x∗,−1T ) ∈ ∂F Ig(0, 0). Chieu’s equality (8) tells us that for almost all t ∈ T
we have

α(x∗(t),−1) ∈ ∂Fengt(0, 0) = ∂Fendepi ft(0, 0).

Since (0, 0) ∈ epi ft, the definition of Fenchel subdifferential of depi ft at (0, 0)
easily gives that for almost all t ∈ T

inf
h∈Rn

{f(t, h)− 〈x∗(t), h〉} ≥ 0, i.e., x∗(t) ∈ ∂Fenft(0),

and hence in particular x∗ ∈ ∂F If (0). The last two inclusions obviously entail
the equalities in (b) of the proposition.
It remains to show that (b)⇒ (a). Suppose that (b) holds. The implication⇒ of
(a) being always true, let us prove the reverse one. Fix (x∗,−1T ) ∈ ∂−dS(0, 0).
The inclusion of (12) ensures that x∗ ∈ ∂−If (0). By assumption (b), for almost
all t ∈ T we have x∗(t) ∈ ∂Fenft(0). It is not difficult to see that this implies
that for all (h, r) ∈ S

〈x∗, h〉 ≤
∫
T

r(t) dµ,

and hence

〈x∗, h〉 −
∫
T

r(t) dµ ≤ dS(h, r)

for all (h, r) ∈ L1
Rn × L1

R since ‖(x∗,−1T )‖L∞
Rn×L∞R ≤ 1. This assures us in

particular that (x∗,−1T ) ∈ ∂F dS(0, 0) and completes the proof. �

Remark 4.1 This proposition implies that

∂−dS(0) = ∂F dS(0) =⇒ ∂−If (0) = ∂F If (0).

In the previous part of this section, we address the study of the coincidence of
∂LIf and ∂AIf at a fixed point x0 ∈ L1(T,Rn). The next part is concerned
with the coincidence of those subdifferentials over the whole space L1(T,Rn).

We start with the following proposition which will be used in the proof of the
result related to the coincidence of the subdifferentials at all points. Recall first
that for a multivalued mapping G defined on X, its effective domain is the set
DomG := {u ∈ X : G(u) 6= ∅}.

Proposition 4.2 Let X be a Banach space and g : X → R ∪ {+∞} be an
extended real-valued function whose restriction to Dom g is continuous and with
int Dom g 6= ∅. Then the function g is convex if and only if Dom g is a convex
set and and there exists a subset D ⊂ (Dom ∂Feng) ∩ int Dom g which is dense
in Dom g.
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Proof. If the function g is convex, then its effective domain is obviously convex.
Further, the continuity of the convex function g on int Dom g assures us that
its Fenchel subdifferential is nonempty at any point of int Dom g and of course
int Dom g is dense in Dom g according to the convexity of Dom g.
Suppose now that the property of the proposition holds, i.e., Dom g is convex
and there exist a subset D ⊂ int Dom g which is dense in Dom g and such
that ∂Feng(u) 6= ∅ for all u ∈ D. Let u ∈ Dom g and λ ∈]0, 1[. Take any
v ∈ int Dom g. By the convexity assumption of Dom g we have λu+ (1− λ)v ∈
Dom g and hence there exists a sequence (yk)k in D converging to λu+(1−λ)v.
Choose for each integer k some y∗k ∈ ∂Feng(yk). For each integer k take the
vector vk given by yk−u = (1−λ)(vk−u). It is easily seen that (vk)k converges
to v, and hence deleting a finite number of k if necessary we may suppose that
vk ∈ int Dom g. By definition of the Fenchel subdifferential we have

〈y∗k, vk − yk〉 ≤ g(vk)− g(yk) and 〈y∗k, u− yk〉 ≤ g(u)− g(yk)

and hence after multiplication by (1− λ) and λ respectively we obtain

〈y∗k, (1− λ)vk − (1− λ)yk〉 ≤ (1− λ)g(vk)− (1− λ)g(yk)

and
〈y∗k, λu− λyk〉 ≤ λg(u)− λg(yk).

Adding the two latter inequalities yields

g(yk) ≤ λg(u) + (1− λ)g(vk),

and the continuity of g on Dom g allows us to write that

g(λu+ (1− λ)v) ≤ λg(u) + (1− λ)g(v). (17)

Finally, fix any v ∈ Dom g. Take a sequence (v′k)k in D converging to v. Ap-
plying (17) with v′k and taking the limit yields

g(λu+ (1− λ)v) ≤ λg(u) + (1− λ)g(v),

which completes the proof. �

Theorem 4.3 Let f : T ×Rn → R be a real-valued normal integrand such that
If is finite and continuous on L1(T,Rn). Then there exists a dense set D in
L1(T,Rn) such that

∂LIf (x) 6= ∅ ∀x ∈ D (18)

if and only if for µ-almost all t ∈ T the function f(t, ·) is convex.

Proof. The convexity of f(t, ·) for almost all t ∈ T obviously entails the convex-
ity of If . Therefore, the function If being in addition continuous on L1(T,Rn)
we get that ∂LIf (x) = ∂FenIf (x) 6= ∅ for any x ∈ L1(T,Rn).
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Suppose now that for some dense set D in L1(T,Rn) one has ∂LIf (x) 6= ∅ for
all x ∈ D. Chieu’s equality (8) ensures that D ⊂ Dom ∂FenIf . Proposition 4.2
then assures us that If is convex. So, for all λ ∈]0, 1[ and x, y ∈ L1(T,Rn) we
have

If (λx+ (1− λ)y) ≤ λIf (x) + (1− λ)If (y).

Define the function g : T ×Rn ×Rn 7→ R by

g(t, u, v) = λf(t, u) + (1− λ)f(t, v))− f(t, λu+ (1− λ)v).

Note that g is a measurable integrand and g(t, u, u) = 0 for all u ∈ Rn. Then for
all x ∈ L1(T,Rn), the function Ig attains its minimum on L1(T,Rn)×L1(T,Rn)
at (x, x). By Lemma 4.1 we get

inf
u,v∈Rn

g(t, u, v) ≥ 0 a.e. t ∈ T.

Let {λk} be a countable dense set in [0, 1]. Then for all k, there exists Nk ⊂ T
such that µ(Nk) = 0 and

inf
u,v∈Rn

{λkf(t, u) + (1− λk)f(t, v))− f(t, λku+ (1− λk)v)} ≥ 0, ∀t ∈ T\Nk.

Now for the negligible set N :=
⋃

k∈NNk we see that for all t ∈ T \ N and
k ∈ N

λkf(t, u) + (1− λk)f(t, v)) ≥ f(t, λku+ (1− λk)v)∀u, v ∈ Rn.

Using the lower semicontinuity of f(t, ·), we obtain the convexity of f(t, ·) for
each t ∈ T0. �

Remark 4.2 It follows from the statement of the theorem that the assumptions
made there ensure the equivalence between relation (18) and the following one:

∂LIf (x) 6= ∅ ∀x ∈ L1(T,Rn).

Note that the local Lipschitzness property of If (and hence also, by Theorem
4.1, the global one) is entailed by the convexity and the continuity of If .

The result concerning the dense or global coincidence of the limiting subdiffer-
ential and the approximate subdifferential on L1(T,Rn) can now be stated.

Theorem 4.4 Let f : T × Rn → R be a real-valued normal integrand such
that If is finite and Lipschitz on L1(T,Rn). Then there exists a dense set D in
L1(T,Rn) such that

∂LIf (x) = ∂AIf (x) ∀x ∈ D

if and only if for µ-almost all t ∈ T the function f(t, ·) is convex.
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Proof. Since the approximate subdifferential of a (locally) Lipschitz function is
nonempty at any point, the equality in the theorem ensures the nonemptiness
of ∂LIf at any point of D ⊂ L1(T,Rn) and hence the theorem follows from
Theorem 4.3. �

Concerning decomposable sets of L1(T,Rn) we have the following corollary.

Corollary 4.2 Let M : T ⇒ Rn be a measurable multivalued mapping with
nonempty closed values and admitting at least one selection in L1(T,Rn). Then
for the integral functional IM of Corollary 4.1, we have

∂LIM (x) = ∂AIM (x) ∀x ∈ L1(T,Rn)

if and only if for µ-almost all t ∈ T the set M(t) is convex.

Proof. Putting f(t, u) := d(u,M(t)) for all t ∈ T and u ∈ Rn, the function
f is a normal integrand which satisfies the assumptions of Theorem 4.4. Then,
there exists a measurable subset T0 whose complement in T is negligible and
such that for each t ∈ T0 the distance function d(·,M(t)) is convex. So, the set
M(t) being closed, we conclude that M(t) is convex for all t ∈ T0. �

Remark 4.3 The results of the paper can be easily extended as stated to the
context of infinite dimensional separable Banach space X instead of Rn provided
L1(T,X) is separable. But to avoid technicality, we have restricted our study to
the finite dimensional situation.

5 Applications to the Aubin property and to the
convexity of multivalued mappings

Let M : T × Rm ⇒ Rn be a multivalued mapping which is T ⊗ B(Rm)-
measurable in the sense of [4, 35], that is,

M−1(U) := {(t, x) ∈ T × Rm : M(t, x) ∩ U 6= ∅} ∈ T ⊗ B(Rm)

for any open set U in Rn. Assume also that the graph of M(t, ·) is closed
for almost all t ∈ T and that t 7→ d(0,M(t, x(t)) is µ-integrable for all x ∈
L1(T,Rm).
For each x ∈ L1(T,Rm) consider

Σ1M(x) := {y ∈ L1(T,Rn) : y(t) ∈M(t, x(t)) a.e.},

so that Σ1M : L1(T,Rm) ⇒ L1(T,Rn) defines a multivalued mapping with
closed graph.

Proposition 5.1 With the above notations, the following assertions are equiv-
alent:
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(a) The multivalued mapping Σ1M has the γ-Aubin property at some point (x̄, ȳ)
with ȳ(t) ∈M(t, x̄(t)) a.e. t ∈ T ; that is, there exists r > 0 such that

Σ1M(x) ∩BL1(T,Rn)(ȳ, r) ⊂ Σ1M(x′) + γ‖x− x′‖BL1(T,Rn)

for all x, x′ ∈ BL1(T,Rm)(x̄, r);
(b) The multivalued mapping Σ1M is γ-Lipschitzian on L1(T,Rm); that is,

Σ1M(x) ⊂ Σ1M(x′) + γ‖x− x′‖BL1(T,Rn) ∀x, x′ ∈ L1(T,Rm);

(c) For almost all t ∈ T the multivalued mapping u⇒M(t, u) is γ-Lipschitzian
on Rm.

Proof. For a multivalued mapping G : Rm ⇒ Rn with nonempty closed values,
it is easy to see that G is γ-Lipschitzian if and only if

d(v′, G(u′)) ≤ d(v,G(u)) + ‖v′ − v‖+ γ‖u′ − u‖

for all u, u′ ∈ Rm and v, v′ ∈ Rn. By 9.37 in [35], the γ-Aubin property of G at
(ū, v̄) ∈ gphG is characterized by the existence of some neighborhoods U and
V of ū and v̄ respectively such that

d(v′, G(u′)) ≤ d(v,G(x)) + ‖v′ − v‖+ γ‖u′ − u‖

for all u, u′ ∈ U and v, v′ ∈ V . Then, observing as in the previous section that

dL1(T,Rn)(y,Σ
1M(x)) =

∫
T

d(y(t),M(t, x(t)) dµ

and using the norm on Rm ×Rn given by ‖u‖+ γ‖v‖ one easily sees that the
result follows from Theorem 4.1. �

We know by Corollary 1.6 in Hiai-Umegaki [14] that Σ1M takes convex values
if and only if for each x ∈ L1(T,Rm) the set M(t, x(t)) is convex for almost
all t ∈ T . We rely next the convexity of the graph of M(t, ·) to the limiting
subdifferential of the functions (x, y) 7→ ∆Σ1M (x, y) and (u, v) 7→ ∆M(t,·)(u, v)
defined by

∆Σ1M (x, y) = dL1(T,Rn)(y,Σ
1M(x)) ∀(x, y) ∈ L1(T,Rm)× L1(T,Rn)

∆M(t,·)(u, v) := d(v,M(t, u)) ∀(u, v) ∈ Rm ×Rn.

There is a connection between this type of functions and the Fréchet normal
cone as well as the limiting normal cone to the graph of the multivalued mapping
Σ1M . This link has been established by Thibault in [36] for the limiting sub-
differential with the use of the Ekeland variational principle, while for Fréchet
subdifferential, Thibault [37] gives a simpler and direct proof by using the def-
inition of Fréchet subdifferential. More precisely, Thibault showed that when
the graph of a multivalued mapping G : X ⇒ Y (between two Banach spaces
X and Y ) is closed, then for any (x̄, ȳ) in this graph,

NL(gphG, (x̄, ȳ)) = R+∂L∆G(x̄, ȳ) and NF (gphG, (x̄, ȳ)) = R+∂
F ∆G(x̄, ȳ).
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Proposition 5.2 One has ∂L∆Σ1M (x, y) 6= ∅ for all (x, y) in a dense subset
of L1(T,Rm) × L1(T,Rn) if and only if for almost all t ∈ T the multivalued
mapping M(t, ·) has a convex graph.

Proof. It suffices to apply Theorem 4.3 and to see that the multivalued mapping
M(t, ·) has a convex graph iff the function (u, v) 7→ ∆M(t,·)(u, v) is convex. �

6 Application to necessary optimality conditions
for Bolza problem

Our aim in this section is to give new necessary optimality conditions for Bolza
problem (1). The domain over which the minimization occurs is typically the
space W 1,1([a, b],Rn) (abbreviated W 1,1), consisting of all absolutely continu-
ous functions y : [a, b] 7→ Rn (ẏ denotes the derivative (almost everywhere) of
y), where a, b are real numbers with a < b.
As in [38], we define the functions α : Rn × L1([a, b],Rn) → Rn × Rn and
β : Rn×L1([a, b],Rn)→ L1([a, b],Rn)×L1([a, b],Rn) by putting for all (ζ, v) ∈
Rn × L1([a, b],Rn)

α(ζ, v) = (ζ, ζ +

∫ b

a

v(s) ds), β(ζ, v) = (t 7→ ζ +

∫ t

a

v(s) ds, v).

Observe that the spaces W 1,1([a, b],Rn) and Rn × L1([a, b],Rn) are isomor-
phic through the bicontinuous bijective linear mapping J : W 1,1([a, b],Rn) →
Rn × L1([a, b],Rn) given by J(y) = (y(a), ẏ). So, with the above notations, an
element z ∈W 1,1([a, b],Rn) is a local solution of problem (1) if and only if the
point (z(a), ż) is a local solution with respect to (ζ, v) ∈ Rn × L1([a, b],Rn) of
the problem

min(` ◦ α)(ζ, v) + (IL ◦ β)(ζ, v) (19)

where IL(x, y) =
∫ b

a
L(t, x(t), y(t))dt for all (x, y) ∈ L1([a, b],Rn)×L1([a, b],Rn).

Following [38], the adjoint mappings α∗ : Rn ×Rn → Rn × L∞([a, b],Rn) and
β∗ : L∞([a, b],Rn)×L∞([a, b],Rn)→ Rn×L∞([a, b],Rn) of α and β are given
by

α∗(ζ, ξ) = (ζ + ξ, ξ̃) and β∗(q, p) = (

∫ b

a

q(s)ds, p−Q)

where ξ̃ : t 7→ ξ is a constant function and Q(t) = −
∫ b

t
q(s)ds for all t ∈ [a, b].

We assume that L : [a, b]×Rn ×Rn → R ∪ {+∞} is T ⊗ B ⊗ B-measurable.
To avoid technicality, the assumptions will be made directly on IL instead of L.

Proposition 6.1 Let z be a local solution of Bolza problem (1) in W 1,1. Sup-
pose that ` and IL are locally Lipschitz at (z(a), z(b)) and (z, ż) respectively.
Suppose also that

∂seq
A IL(z, ż) = ∂LIL(z, ż). (20)
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Then there exists p ∈W 1,1 such that

(p(a),−p(b)) ∈ ∂L`((z(a), z(b))

and such that for a.e. t ∈ [a, b]

(ṗ(t), p(t)) ∈ ∂FenL(t, z(t), ż(t)).

Proof. We follow some arguments of Proposition 3.4 in [38]. According to
(19) and to the analysis above we have

(0, 0) ∈ ∂A(` ◦ α+ IL ◦ β)(z(a), ż).

The functions ` and L being locally Lipschitzian near (z(a), z(b)) and (z, ż)
respectively, we have by approximate subdifferential calculus rules (see [15])
that

∂A(` ◦ α+ IL ◦ β)(z(a), ż) ⊂ α∗
(
∂A`(z(a), z(b))

)
+ β∗

(
∂AIL(z, ż)

)
,

and hence there are (ρ, σ) ∈ Rn×Rn and (q, p) ∈ L∞([a, b],Rn)×L∞([a, b],Rn)
with (ρ, σ) ∈ ∂A`(z(a), z(b)) and (q, p) ∈ ∂AIL(z, ż) such that

(0, 0) = α∗(ρ, σ) + β∗(q, p) = (ρ+ σ, σ̃) + (

∫ b

a

q(s) ds, ρ−Q),

where as above σ̃(t) = σ and Q(t) = −
∫ b

t
q(s) ds for all t ∈ [a, b]. Therefore,

ρ+ σ = −
∫ b

a

q(s) ds and p(t) +

∫ b

t

q(s) ds = −σ for a.e. t ∈ [a, b]. (21)

The second equality of (21) tells us that p (in fact a representative of its equiv-
alence class) is absolutely continuous with ṗ(t) = q(t) for a.e. t, and the con-
tinuity of p combined with the second equality of (21) gives p(b) = −σ and

p(a) +
∫ b

a
q(s) ds = −σ. Using the latter equality in the first equality of (21) we

obtain ρ = p(a). Consequently

(p(a),−p(b)) ∈ ∂A`(z(a), z(b)) and (p, ṗ) ∈ ∂AIL(z, ż). (22)

Theorem 4.2 and relation (20) ensure that ∂AIL(z, ż) = ∂LIL(z, ż), and hence
relation (8) and the second inclusion of (22) entail that for almost every t ∈ [a, b]
we have

(ṗ(t), p(t)) ∈ ∂FenL(t, z(t), ż(t)).

Further, the function ` being defined on the finite dimensional space Rn×Rn we
have ∂A`(z(a), z(b)) = ∂L`(z(a), z(b)) and hence (p(a),−p(b)) ∈ ∂L`(z(a), z(b)).
The proof of the theorem is then complete. �

Consider now a closed subset C of Rn ×Rn and the problem{
Minimize

∫ b

a
L(t, y(t), ẏ(t)) dt

subject to the constraint (y(a), y(b)) ∈ C,
(23)
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where L satisfies the local Lipschitz property above near z. If z is a local solution
of problem (23), adapting the method of Lemma 3.2 in Clarke [6] (see also [38,
Lemma 3.5]) one obtains some constant γ > 0 such that z is a local solution of
problem (1) for `(ζ, ξ) = γdC(ζ, ξ) for all (ζ, ξ) ∈ Rn ×Rn. So, we deduce the
following corollary.

Corollary 6.1 Let z be a local solution of problem (23) in W 1,1. Suppose that
IL satisfies the assumptions of Proposition 6.1. Then there exists p ∈W 1,1 such
that

(p(a),−p(b)) ∈ NL

(
C, (z(a), z(b))

)
and such that for a.e. t ∈ [a, b]

(ṗ(t), p(t)) ∈ ∂FenL(t, z(t), ż(t)).

Remark 6.1 Under the convexity of `, Proposition 6.1 implies that z is a local
solution to the Bolza problem (1) if and only if it is a global one.
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